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ROBERT J. ELLIOTT

The Existence of Smooth Densities for the
Prediction, Filtering and Smoothing Problems

Brief Outline of Results

A large number of papers have been produced giving results of both practical and

theoretical interest. I am grateful for the support of the U.S. Air Force office of Scientific

Research and hope it is pleased-with what I have done.

In 1987, I realized-the central role played by the idea of a stochastic flow; this gave rise to

a series of papers. The more theoretical consider martingale representation and integration by parts
in function space. This in turn gives rise to more elementary proofs of some results in the

Malliavin calculus. These techniques are reported in papers [2], [3] and [8].

I then realized how the proofs could be adapted to show the existence of densities for
filtering, smoothing and prediction problems, [1]. In collaboration with John Baras and Michael

Kohlman I used the techniques of stochastic flows to obtain results in stochastic control [4], [9],

[11]. In particular the martingale representation r3sult was applied and equations for the adjoint
process obtained [5] Similar results were obtained for jump processes and reported in [7). Work
with my student Allan Tsoi has included integration by parts formulae and time reversal of jurnp

processes, [16.1, [20], [25]. With my student Hailiang Yang, results have been obtained on the
adjoint process in partially observed control problems [21]. My most interesting recent work

contains new equations for tie adjoint process. Using martingale representation results it is shown
the adjoint process satisfies forward and backward equations, of which the latter is most

significant. These results are described in (17], (19], [24]. The adjoint process appears in the

minimum principle and so plays a central role in detennining any optimal control. Martingale

representation results to minimize expected risk are described in [14] and [26].
Full details of results obtained during the contract are presented in the papers.

Accesion Fr - -1

NTIS CRA& ~ J
Dl'IC IAj
Ula;wiou iced
JUStification

......... ............ ~
~By

Dist. ibution
Availabi'ily Coces

Dist Avai jof

-z -



The Existence of Smooth Densities for the Prediction,
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Abstract. Using a simple martingale repiresentation result. a partial integration-by-parts formula is
obtained. Quoting the results of Bismnut and Michel. it then follows that under l-l~rmander~s
conditioas (in the coefficient vector fields, the filtering. %moothing and prediction prohlums have C'
density solulions. The paper does not require the development of any analvsi,, ove r Wiener space.

AMS subject classifications (1980). 93E 11. 6010l.

Kei' words. Filtering, prediction. smoothing. Malliavin calculus. stochastic differential equalion%.

1. Introduction

Following Malliavin's remarkable work [8]. there have been other treatments of
thie Malliavin calculus, including those of Bismut [1]. Stroock [11] and Norrts
[10]. A particularly readable account can be found in the paper of Zakai [ 131. In
[2], Bismut and Michel developed a conditional version of the Malliavin calculus
to show thle existence of a conditional density in filtering and smoothing prob-
!emis. Other important applications of the Malliavin calculus to filtering polm
include the work of Cattiaux [4], Kusuoka and Stroock [II]I and Michel [9].
Using a simple and natural expression for the integrand in a stochastic integral.
thle authors [5] have been able to give an elementary proof of the existence of a
density for a diffusion under Hirmander's conditions for the coefficient vector
fields. The homogeneous chaos expansion of thle random variable is also obtained
in [5]. The objective of this )aper is to present a conditional version of thle results
of [5] and, following the exposition of Zakai. simplify some of thle results of

*Research partially supported by the Air Force Office oif Scientific Research. United State.% Air
Force. under grasnt AFOSR-86-0i12 -and European Ollicc of Aerospace Research anJ t)evelopmnti.
London. England.

'Research partially supported by NSERC Grant A 7964.
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Bismut and Michel, In particular, a conditional integration-by-parts formula is
obtained without usingz any functional analysis over Wiener space. However, the
delicate technical sufficient conditions for the integrability of the inverse of (fhe
Malliavin miatrix are not discussed. For these we refer to Bismut and Michel (2].

In this paper. [lhc following system of stochastic dificrential equations is
cons idercd:

dx~~~~~ ~~~ , X1(.1 s -X(.y)d'+X(x, y) dB' + X1(x, y)Iz'(x. y) dt.

dy = Yo,(y) dt+ Y,(y) d13' 4 Y(y)1z'(x, y) dt.

Here w =(w,.. .. it,) and = (B'...... B"l) are independent B~rownian
motions. The process x represents the unobserved signal process. while y
represents the observationi process. If IY,) is the right continuous, complete
filtration generated by ly,. then the liltering prbe dicIc E~~ J. thie

prediction problem discusses Efx, IY~j when s -- , and the smoothing problem
discusses E~x1 I Y, ] when s -- i

Using the simple martingale representation result of [5), a conditional version
of the Malliavin calculus is developed in Section 4. Suppose T -- and let c bc
any smooth function on Rd with bounded derivatives of all orders. In Section 5.
we show that if the inverse of the conditional Malliavin matrix MO.- belongs to
L"(11) for all p. I -- p <. then

E[' (x,) I Y,-] jK(y) sup Ic(x)I

for all multi-indices a = (a,_ . .ad). where K(y) is a Yr-measurable random
variable which is finite a.s.

This inequality, using simple Fourier ana!ysis. implies that the random variable
.r, has almost surely a conditional density given YT. which is infinitely ditlerenti-
able. Using Jensen's inequality we can immediately deduce

E "c (x)IY] K'(y) sup I c(x)l .

where s -- or s -- . Therefore, the smoothing, filtering and prediction problems
for x,. given Y's, have, almost surely, smooth conditional densitv solutions.

2. Stochastic Flows
We recall in this section thie properties of stochastic flows, and in particular those
relating to 'lower triangular' systems obtained by Norris (1 0]. See also Stroock
[ill. Let w, =(w v,), t- 0. be an n-dimensional Brownian motion on
(D). F. P). Write I F,) for the right continuous, completfe filtration generated by w.
Suppose X19. X . .. ,, are smooth vector fields on (0. -] x Rd all ofhs
derivatives are bounded. Then from Bismut [I). or Carverhill and Elworthy 13].
we quote the following result:
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THEOREM 2.1. There is a nap :f1X[O.-)X[t).c)X R d- R" such that (i) for
0 _< s -_ and x e Rd &(x) is the essentially unique solution (if the stochastic
differential equation

d&,(x) 6.,0 (t. x)) d t+ X1(t. e..Ax)) d w. (2. 1)

with &.,,(x) = x. (Note the Einstein summation convention is used.)
(ii) -For each w. s, th[le maip &J) is C' on R" with a first derivative. the

Jacobian. 0&o = D,.,, which satisfies

will: initial condition D, = 1. the d x d identity matrix.

REMARKS 2.2. This result is proved, as quoted. for possibly time in-
homogencous coeflicient vector fields, X,, though we shall riot use this general-
ity. Note that (2.2) is obtained formally by diffcrentiating (2.!1). In fact, equation-,
for higher derivatives i)" I0x' are obtained by further differentiation. However, if
we consider the enlarged system given by (2.1) and (2.2). the coefficients are not
bounded, because of the linear appearance of D3, on the right of (2.2). However,
Norris [101 has- exte -nded the results of Theorem 2.1 to such systems with time
homogeneous coefficients. To state Norris's results, we first define a class of
'lower triangular' coefficients.

DEFINITION 2.3. For positive integers a, d, dt,.  d write S,(d ..... A)
for the set of X E C-(R d R d) of the form

X"'(x ) (
X(X) -_X2( .xfor x =x(2.3)

where R d is identified with Rd. X .. x R"&, x' e Rd, and the X' satisfy

IIXtiSanm sup ( sup ID A()I u IDX(')(x)I)XCd()'naN (I +Ix1") SUP I,

<- for all positive integers N. (2.4)

Write S(d .... dk) =U,S,,(d ... dk).

REMARKS 2.4. Note Equations (2.1) and (2.2) can be considered as a single
system whose coefficients are not bounded. but are in S(d. d2). The final
supremumn on the right of (2.4) implies the first derivatives of X") are bounded.
as are the first derivativeF Dj in (lhe *new' variable xj of Xli)(x.... x). This
means X111 is allowed linear growth in xi. a situation illustrated in (2.2). We quote
from Norris the following result.
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THEOREM 2.5. Let Xo. XI..... X,.. e S,(d..... dk). Then there is a map
d,: 11 X [0. m) X [0, -) x R d - R" such that

(i) for 0 -- s -- ti ad x E Rd O(w, s. t, x) is the essentially unique solution of the

stochastic differential equation

dx, = X,(x,) dt + X,(x,) d w' (2.5)
with x, x.

(ii) fr each (a, s. t the map O(w, s, t. x) is C- in x with derivatives of all orders

satisfying stochastic differential equations obtained from (2.5) by formal
differentiation.

(iii) sup EC sup IDN,!(w, s, u. x)W'I

- C(p. s, t. R. N. d,..... a.,I X,,Is..,.. IXf , 1 ,). (2.6)

REMARKS 2.6. Norris proves Theorem 2.5 by induction on i. Write (2.5) as a,
system of stochastic differential equations for j = ! ..... k

dx{= X( Ix . d x)dt+tX 1(x .x1,)dwI.

X=X R',. (2.7)

Suppose the result is true for i = I . - I and write ,?(c.s. t, x9)
............ ......x,-'(w). x'). Then (2.7) can be written in the form

dx = X,,(s. .1) dt + X,(s, t. x,) dw,

and Theorem 2.1 applied. N difficult step is establishing the result for = .
However, this follows by a stopping time argument, which is essentially the
method by Bismut (1]. Returning to the, possibly time inhomogeneous. situation
of Theorem 2. I, consider the process V defined by

SV,., (t. ,.x)) d w, (2.8)

with V,.=I Then by applying the Ito rule, we see d(D.,V,) = O. while
D,. V, = 1. the d x d identity matrix. Therefore. V,=D - . By applying

"I Theorem 2.5(iii) to the system given by Equations (2.1), (2.2) and (2.8). we have

ID.,I = sup ID%.,I and I Vj sup I V,.,,I

are in LP(M) for all p <;. Finally. for (< s - t. recall, by the uniqueness of theI - solution of (2.1):

- .,,.,(x.) = ,.,A f.,(xo)) &A A.,x) if X = ,:, tr.. 2.9

_ -f.~= --
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Different iating (2.9)

DI), P 1)(1., (2.10)

3. Martingale Representation

Consider a stochastic differential system with coefficients in some set S. as

someT> cosidr area-vaueddifferential function c for which (he ranldom
vaibec(j,.7-(x,,)) an h opnnsof the gain r n

tgal.Let A, be the rig~ht continuous version of the martingale

There exist several proofs of martingale representation results;, see. for example.
Bismut (1] and the references given--there. However, the following proof in the
Markov case. see [5], is particularly straightforward.

THEOREM 3. 1. For (I _- t T, Mf- = E[C(f 0.T(X1)] + f0 -y(s) d w, where

y,(s) =E[C4(f0.T(X1o)) D(0. I F1 DJ.,X,(s. f,)5 Xo)).

Proof. It is well known that M, has a representation

M, = M(,+j-(s) dw' (3.1)

for some predictable integrands y.. Because the process f(%.T(x0) is Markov

A,=E[c(6).(xj.)) I F]

= Ef C(IC.T(X)) I F,] (3.2)

= V(t, X), say, where x = .,x)

By Theorem 2.5 and the chain rule C(f,.(X)) is differentiable, in fact smooth, in
x. The differentiability of E,.jc(.T-(x))I in t can be established by writing (fie
backward equation for 6.TX), as in Kunita [6]. Consequently, applying the Ito
role to V(t, x), withX = fTX(O)we have

V0., 4"'(X,,)) =V(O. xe,) + aV+ LV) ds +
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where

L = ,- -X" Xi a
i-1 Ox, 2 /ox, ;Ix"

By tie uniqueness of the decomposition of Special semimartingales, comparing(3.1) and (3.3). we must have (as is well known)

;IV
-+ LV=O

and
aV

V(s) =, (S' &AO.(x,m f,.,(xo)).

From (3.2)

-)x = E[c(..,-(x)) D,.T I FA

so by (2. 10)

•y,(s) = E[cj(,.T(x,,)) DOt,.T I FD,,.sX,(s. fo.s(X,,)).
COROLLARY 3.2. The result extends immediately to vector (or matrix) functions

COROLLARY 3.3. Note. in particular,

c(b ,r(xo)) = Ec(f,.r(x,))j +

+,L E[c(e 0 '(x-))D1,r.-F;]DJX,(s, ,.sx,)) d w,." (3.4)
LEMMA 3.4. F is generated by the set of stochastic integrals of the form1 "-y,(s, w do. where the integrands ', are smooth functions of s and w, at time s.with bounded derivatives of all-orders.

Proof. or{w} is generated by g(w,) for g- Ch(R4 ). If we apply Theorem 3.1 tothe process w,. so W;x+(w, - w) where x w. the Jacobian is the identity I
and

Efg.(w,)I FI = E,.,g,(gw= y(w;)I

where
= 7~~~~~(w,) =(v,(W,) ...Vm-t,,(;)) = ,.,[g,, w,). g,- w,))}.

Therefore.

g t w ,) E f g ( W ,) + / , w ,) d W E .

- -I3;
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where the -y C'(R d). Consequently, a-(m) is generated by stochastic integral,,
of -this -form. Allowing the integrands to depend on s we that r,. which is
generated by w,. for s _- t, is generated by stochastic integral., of thc formi
fj' y(s, w)dw,, where -y}e Cb-([O.-)x R").

REMARKS 3.5. So far we have- considered an it-dimentsional Brownian motion
it = (w' . ... w') and a state vector xE R'". Consider now a larger system:
suppose B =(B ...... B") is an n-dimensional B~rownian motion, defined on a
probability space (fl. F, P), which is independent of w. Write {P-,) for the right
continuous, complete filtration generated-by B, and I{G, for the right continuous,
complete filtration of fl x fl generated by F, X ,. Consider a second state vector
Y E R" and a stochastic differential system defined on (fl X h,. F x P, P X P') by
the equations

dx, =X(,(x,. y,) d1 + Xix,. y,) dw' +,(x,. y,)dB',,

d y, =Yo(y,)d I+ Yj(y,) d Bf (3.5)

with (x(O), y(O)) =(x0j, yo) (E R' x RP. We shall suppose the coefficient vector
fields X, ... . X,. Y, , ..., Y,, are such that the coefficients of (3.5) belong to
the space S, so that Theorem 2.5 can be applied. Note that in (3.5) the process y
is not influenced by the process x.

NOTATION 3.6. Suppose (x, y) E R d x RP is the state of the system (3.5) at time
s. We shall denote the solution flow of (3.5) for s by the map

(X, y) - (x,.,(x. Y), Ys.(Y)).

The Jacobian of this map looks like

a10x..,(X, y), y",(y)) a a I36
a(x, y) a(y5,,(Y)) * 36

ay
Write D5.,(x. y) for the 'partial' Jacobian o(x,.,(x, y))Iax. The existence of the
large Jacobian, and, therefore, of its components, including D,.,, is given by
Theorem 2.5.

As in [2], we now introduce a new measure on (fl X f2, F x F) by a Girsanov
change of density.

NOTATION 3.7. Suppose h(x, y) =(h'(x, y),..., h'(x, y)) is a smooth function
in C(R d'p , Rn) with bounded derivatives of all orders. Define the real valued
process L on flXflX[O0, o)2 X R X R" by

L,(,y)

-jI

-rp h-x..x y)-,.y)dBu- h~,.x ) .. ()2di
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Then

dL..,(x, y) = L,.,(x, y)h'(xj.,(x, y), y,.,(x, y)) d B. (3.7)

with L,,(x, y) = I, so L is a {G,} martingale, Furthermore. L*,, sup,., Lo.,, is in
every space L"(Q), I -- p < -. Because h is bounded, we also have that (LA.,)*
sup,(L.,) is in every L(Dq), I < p <-. We could consider the flow given by
the combined system (3.5) and (3.7). However, for the moment note that for

L,,.,(xo, yo) = Lo.,(xo, yt)L,.,(x. y), (3.8)

so writing L =L.,(xo, yo,) we have

.... = L.,(x, y)
aL

and
a rid,

L-,.,(x, y) + L", D (3.9)
iOxo 3xo o

with a similar equation for OL,, 1 ayo.

DEFINITION 3.8. Define a measure Ph on (fl x fl. Fx F) such that its restric-
lion to G, is given by

dPh(w, (5) =L,,,(x,, yo) dP )XdP().

Then Girsanov's theorem states:

THEOREM 3.9. Under Ph the process B' is an n-dinzensional Brownian motion
independent of w, where

B,= B, - h(x., yo.,) ds.

Therefore, under the measure Ph, the process (x,,, y,.,) is the solution of the
stochastic differential equation

dx,, = Xo(x,.,, y,.,)dt+ Xi(x,.,, y,.,)dw + X(x, ., ,.y,)dB'+

+ t y,.,)h'(x,.,, ys.1) d .

dy,., = Yo(y.,)dt+ Y(y,.,)dB7+ Y(y.,.,)h'(x5 .,. y,.,) dt, (3.1(0)

with (x,.,, y.) = (x, y) E R X RP.

REMARKS 3.10. The system (3.10) provides a natural setting in which to discuss
filtering, smoothing or prediction problems. The process x, represents a si,,na!
which is nor observed directly. instead, one observes the process y, which is
influenced by x, through the process h(x,, y,). Write Y, for the right continuous,



SMOOTH DENSITIES FOR PREDICTION FILTERING ANt) SMOOTHING PROBlLEM?,S 277

complete-filtration generated-by y, and E,, for expectation under 11h. The filtering
problem- d iscusses Eh[x, IY 1], the smoothing problem discusses Eh[x, IYr)], where
u- T, and-the prediction- problem discusscs Ehlx, I YT.], where t 7T.

In this paper. -using -thle techniques of the Malliavin calcuius, we given sufficient
conditions in the filtering, smoothing and prediction cases, that the conditional
distribution of x, has-a smooth -density.

4. Integration by Parts

Suppose 0 < t - T and let Uo.r(6') be an P-1. measurable random variable of the
form discussed in Lemma 3.4, that is

.1.

where -yjE CNN[. -) x R') for I n. Consider the system given by (3,5),
(3.7) a nd (4. 1) on (fl X0, Fx X , P X P):

dx,., =X(i(x,. y..,) d I + Xi(x5 . y-,.) d w, + X,(s,,. y.,.) d Bi,.

d y, = Yt)(y,) d I+ Y(y,) d Bl (4.2)

d L 5.h'x 5 , y,.,) d Bb

d QI. =(, B,) d Bi,.

Then Theorem 2.5. with (x,.,, y. L,, U.4,) = (x, y, 1, 0), can be applied to (4.2)
.and we can consider the associated stochastic flow. Note U, does not involve x,
y. or L, and if U(,., U then

U0"" U +jf"(s. B)d B I. (4.3)

Also, if Li L,.,. from (3.8)

Lt,= LL31 (s. y). (4.4)

THEOREM 4. 1. Suppose 0 < I -- T and let c be a C' function on R" with
bounded derivatives of all orders. Then for any square integrable predictable process
U(s) =(ul(s). ur)

E[Uor'l0.-C(x(x4i. y(,))D. 1  DJ.'X,(s)u,(s)d +
If-I

I- TI
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E Uo.7'L,,'c(x0,(x,y)) L " D -'X, (s)u,(s) ds . (4.5)
I f ) S xo 'sI

Proof. First recall the derivation of Theorem 3. i and write for 0 -- s -- t -- T

V(s, x. y, L. U) = E[ U,..rL,..r(x,,. y,,)c(xg,,(x,,, yo)) I Gj

= E[(U + U,.T)LL,.T(x. y)C(X,.,(X, y)) I G] (4.6)

= E,.,...u[(U + Us.'r)LL,.(X, y)c(x,.,(x, y))].

The martingale representation result is obtained by writing down the Ito formula
for V, and the derivatives of V are found by differentiating the conditional
expectation (4.5) in x, y, L and U. Note that for s> t the derivative of
c(x,.,(x, y)) in x is zero. We, therefore, have

UO.T-1 ,.T(XO, yo)C(XO.,(X(I- Y0))

= E[U.rL,,..,.(xo, y0)c(x 0 ,(x0 , yO))] +

+ E[ U.Lo,.7C.(x0.,(x,(, y,)) Do., I G]D .'(X, dw'+ 9k, dBS) +

+ E [ U.TL4.'gx(x.p(o o)(x,.,(x Y)) G]YdBi+

+, E(U,).TL,.Tc(xO.,(xo, y,) I Gj]h' dBi +

+ f E[ Uo.TL- (x. y)c(xo.,(x,, yo)) G, (X, d v' + ), dB +

E[ U.TL (x. V)c(xo.,(x,,, y,)) G Y, dBi +

+ E[ U.-L%..c(x0 .1(x0 , y,)) I G] yy dB',. (4.7)

Taking the product of (4.7) with J(7" ui(s)d w,. because w and B are independent
under P x P. we have

E[ U,..-L,.'rC(X,,,) u,(s) d wt]

= Z E Uc.'rLu..'rC(x.,)D1., DF.t Xi(s)u,(s) ds +
- i- I

+ f... [ L LL-L(..r )Xz(s)ds (4 )
Jo o

(z
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From (3.9),

L y)90 .~~x
iax i)Xo O

Subslituting in (4.8) tihe result follows.

NOTATION 4.2. Write * for the transpose. Furthermore, write

RO.T = (D(-.'Xi(s))* d w.

Aor J L0.- DO-X(s)X(s)*(D-)* ds

and recall thle Malliavin matrix, [1), [5), (which here is a *partial' Malliavin matrix

in the Xi vector fields):

XX JO DO1Xi(s)Xi(s)*(D-1)* ds.

COROLLARY 4.3. We then have tihe special case of Theorem 4.1 obtained by

taking u,(s) =(JX~)*

Eli U0,TLO.7 Cr(x0.,)RO.r])

E[ UI.TL0.7-cE(xo.j)DU.,AMo.j)+

+ E[ UTo.TLo-C(X0 W) 0,1 - (.4.9)

- E[ UO.TL(C(x0.,)AO.T)

COROLLARY 4.4. Equation (4.9) is still true for vector, (or matrix), functions c.

REMARKS 4.5 The gradient c. of c occurs in only one term, so (4.9) is an

'integration by parts' formula. Suppose g is a second smooth function with

bounded derivatives of all orders. Applying (4.9) to the product c(xO.,)g(xO.,) wC

have

Ef Uo.TL 0.7 (x0).,)g(x0 .,) RO.

- E[~~rI~*Tcxo.)g~xs)Ao7i.(4.10)

From Lemma 3.4 the random variables U0.r generate f-, so (4. 10) can be written
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E( L,,.,( x,) g( x,,.,) R().. [ fI,.

=E[L,,..,(c,( x,,.)g(x,,.,) + c(x,,.,)g,(x,,.,)) Lo.,A11 , I j','1 +

+ E L,,.L, ,.c(x,,,)g(x,, ,) M,,

- E[L,.rc(x,.,)g(x,.,)A,. I r].

Under P xP, Yr Firso

E[ L,. 7C(x,.,)g(x0,.,) R,,.r Y7.]

= E[L,.r(C(X,.,)g(x,,.,) + C(X,,)g&(Xo.,))D,.,I YTr +

+ E[L.%,i.L.rc(xo.,)g(xo.,) 3L Mo-,..I Y1]

- E[lI), 7'C(x(.,)g(xo.,)AO..r I Y].

Now

Eh f[c(xo.,)g(xo.,)R(. 7T I YT = E[Lo.-c(xo.,)g(x.,)RO.-r I Y.](E[Lo.7 I Yr])-'.

Furthermore, L')..r > 0 a.s.; therefore

E[L{,r Y ,]-' <- a.s.

Consequently. dividing by E[1..7.1 YT) we have

E,,[c(x,.,)g(x,,.,)Ro. -I Y-r

Eh[(c.(x,,.,)g(x,,.,) + c(x1 .,)g,(xo.,))D,,.,M,., YTJ +

+BjLJ, !rc(x,,.,)g(x,,.,) 9-L M,,..,. Yr

- Eh [c(xo.,)g(xo.,)A,,r I Y-rJ, (4.1)

where both sides are finite a.s.
With this in mind, to obtain a bound for the conditional expectation

Eh(c.(xo.,I Yr] we would like to take g = Mi.D,-., in (4.1 I). However, D., and
Mo., involve the past of the process D,, 1., and M h. This difficulty can be
circumvented by considering an enlarged system. A second difficulty is that the
function g(Mj),,, D1 1 ) = MDo,, does not have bounded derivatives. However.
D-'= V is given by (2.8). Considering g,(M. V) = (M + e)-'V for e >0 and
letting e 0 we see Equation (4.1 1) holds for such a g.

NOTATION 4,6. Let ,h."(w. 5, s. f, x. y, L, U) denote the flow associated with
the system (4.2). Write D,'" for the Jacohi:n associated wi,, h , his flow. Note that
among the components of D ('." are the 'partial' Jacobian

ZL_
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and the gradient aL,.,(x, y)lAlx. Write

R((f (D;1, Xj( u)* d-sv

r' aL~
A ~A. ., = Y, JL. x D-,'Xi (u) Xi(t)*(D,-j'* d u,

00) = D'X( u)X-,(u)*(D,YI

Then thie system

q) =pl D'), R ()pi"A()

is Markov with coefficients in

S(d + p +2, d+ + ++ (d + p + 2)2,

2d+p+2+(d+ p+2) 2,2d+ p+ 2+ 2(d+p +2)2, 1).

The results of Theorem 2.5 apply-to this system and its low (fl" Note that M1., is
the predictable quadratic variation of the tensor product of Ri, with itself. Write
XV) for the coefficient vector fields of the w' integrals in 0") and D',I for the
Jacobian of ".Also write

R($1 (D'S.)-XV), (u))* d w',

and M(, for the predictable quadratic variation of the tensor product of R(,, with
R(,,) which we shall denote by

MM= (R~l®S R(()

Then define (k(2) = (00I), D"), R() M()~) so 0(2) is a Markov process for which
the stochastic flow results of Theorem 2.5 hold. Proceeding in this way we
inductively define X(" for the coefficient vector fields of the wl integrals in 0'").

Afn = (R'n)(D R ")1 ,

and

Write V,, for the gradient operator in the components of 04)
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TH EO REM 4.7. Suppose c is a bounded C- scalar function on Rd withi bounded
derivatives. Let -g be a- possibly vector, (or matrix), valued function on the state
space of 4)" suchi that g((fl)(0, t)) und- V,,g(0~(0, o)) are bot/h ini somLP(a
Then

Eh (c(xI.l) g(O'P(0, t)) (3 R,. I Y1.

=Eh [c.(x0.,)gW((P (, t))DO.,10O, 1 71

" Eh [c(xO.L)Vfg((n)~(0, t)) DoM I YTI +

+ Eh [ J!r.(x,d~g(0f(")(, )) 221 MO7. Y7,

I axo

-E, [c(xO,.)g(0(P')(0) 1))A,,..r I Yr I.

Proof. The result follows by applying to the system 0P") the techniques used to
derive (4.11I).

REMARKS 4.8. Theorem 2.5 implies

sup D I.$ SUpplM(n1. Sup k2j supIA(,.,I

are in L'(fl x h, P x P) for all I -_ p < - and, therefore, finite a.s. We have
lraynoted that

supi DO-' and sup L
34 ' S s I SI

aire in every LP(fl x f2, P x P), I _< p < -. To write out the above results in terms
o~f DO., aL").,,ax and higher derivatives involves very involved calculations. Even
in the one dimensional case, it seems better to introduce thle sequence of flows
~(n). Theorem 4.7 can again be thought of as giving a conditional 'integration by
parts' formula for c,

COROLLARY 4.9. If M(-,Y is in some LP(flxf12,Ph) taking g(("(0. 0))
A41,D04. in Theorem 4.7 we have

=Eh [c(xo,.o)), D t)', (DROlr I YT I

- Ehjc(xO.,)(V, g)(D0., , YdK

- Eh [ c(x (,,,) L (-.'TM D MO,) AI ' Yj-+

+ EAfc(x(, ,)MJ-).DJ-.'A I),, Y7,1.

Because the remaining terms are integrable and, therefore, finit.e a.s., we have
proved the f!ongresuit:
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THEOREM 4.10. Su~ppose Ph is the probability measure of Definition 3.8 and
y,),,) is the solution under 1) h of (3.10d). Let c be a smnooth functionl with

bounded derivatives of all orders. Thent if M~-)!Y is in sorte LP(fl X fl, P,,

E(c.(xj,.,) IYrH1 -- K(y) -sup ic(x)I. (4.12)

where K(y) is Y,.- measu~rable and fintite a.s.

REMARKS 4.1-1. Condition (4.12) implies that the random variable Xo,Axo, yo)
has a conditional density given Y7., d(x), x E R d for almost all y. (See Maliavin
(8] or Zakai [131.) Now for any s -- T, Y, c Yr. So by Jensen's inequality, from
(4.12)

Ec.(x,,.1 ) I YJ] -- K'(y) sup jc(x)j. (4.13)

Equation (4.13)-holds for s -- i or s -- so the prediction, filtering and smooothing
problems for the random variable x0.,(x0, y(,) all have a density for almost all y.

The remaining question concerns the existence and integrability properties of
MII-)'. These have been carefully studied, see Bismut [1], Malliavin (81 and
Stroock [11lJ. For (x, y) E R d x RP write T,. for the vector subspace of R d

generated by the vector fields X1(x, y), . . . , Xm(x, y), and the Lie brackets of
Xt(x, y)..Xmi(x, y) and Xt(x, y),.... ,,x, y), where each bracket contains
at least one of the vector fields X1(x, y),.. . , X.,(x, y). Then in Theorem 1. 19 of
[2] Bismut and Michel show that for all T>O0, M,-.Y is in LP(f X fl, Ph) for all
I -- p < - if the following condition H, analogous to a condition of H~rmander is
satisfied:

H: 7',,.Y,, is equal to the whole of R.

As Bismut [I] observes, if H is satisfied at (x(,, yj)) then it is satisfied in some
neighbourhood of (x,), yo).

Finally recall that if u is a nonsingular linear map of R d to itself, then the map
0: u -~ u-' has a derivative 0'(u) which is a linear map on the space of linear
maps of R d to itself given by 0'(u) - It u - It h u-1. Applying this 1o

g(Do,, M,) M0-'Dj-., we have

E= c. (x )MD ®R. I YT]

-Eh [c(x.,)MAf(-),(V 1 ( 0 R.I YT~~ ~ ~IY
-£h [c(x(.,)M(- DJ,((V 1 0.)( D(O)')M',D-7' I Y'rI

-Eh c(xo.f) L(-.TMf7., D(-. 9L Mo., Yr]

+ Eh[C(X0,.(JiDU.A(,.7.'j Y7-1. (4,14)
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5. Bounds for Higher Derivatives

To show the conditional density of x,,., is differentiable, in the prediction, filtering
and smoothing situations, we shall obtain bounds for higher derivatives of the
form:

-E [-c(x,.,)I Y]. K(y) sup c(x)J, (5.1)
i~"" R/'S

where 0 < t -_ T. Here a= (a, . ad) is a multi-index of nonnegative integers
and

a" ' a': a"
ax" ax, x. ax',

Again, if 0 s-- T, then Jensen's inequality applied to (5.1) gives

E/iC(x,.,)I Y.,] K'(y) sup Ic(x). (5.2)

A well-known argument from harmonic analysis (see [10], or [123) shows that if
(5.2) is true for all a with Ia]= a, + a2+. + atd- n where n > d+ 1, then the
random variable x .,(xO. y,) has a conditional density d(x) given Y,, which is in

Cn-d-I(Rd). That is, we have a differentiable conditional density in the predic-
tion. filtering and smoothing situations.

To see how to proceed apply Corollary 4.9 to c, in place of c. (If preferred,
Corollary 4.9 could be applied to just one partial derivative aclaxk, in place of c.
However, the result is true for vector functions c.) This gives

Eh[c..(xo.,) I YTI

= Eh[c.(x,).,)M-, DO.'(O R1,.7 - YT]

E,[c(xo.,)(V I g)(Di., M,).,) AM 1 YT)

- Eh c.(x.,)L 'M .,D-. i M,.T YIT +
Eh[c,(xO.,)M.,DoJAO.T I Y. (5.3)

Consider the four terms on the right of (5.3). Each term is of the form

Eh[c,,(xO.,)h1(O1'(0, r), 0"(0, 7')) 1 Yr]. i = 1,2. 3,4.

For each such hi consider a function h -=iMf)DF, and apply Theorem 4.7 o c
and h to obtain

Eh[c,(xo.,)h,(S")(O, t), 40"(0, T))] Yr]

= Eh [c(x,,.,)h,(O1 )(O, t), 0t')(0 , T)) (D R,,.' ) YT.]

- Eh[c(x,,,)(Vfl( t) /)( 4,"''(0, t), 4,")(0, -')) -D!aM,. [ Yr I
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+ 0(i~11 )('''() ) ~(0, T))Ao7.1 Yr.

Substituting in (5.3) we obtain an expression on the right which involves only r
and not its derivatives, 'This procedure can be repeated. using Theorem 4.7. A!
each stage, to replace a termn of the form

Eh C( .,)l2( Ol)( -1. "(O, T)) I Y7,

by one involving only -c define ItMI-l:MJ 01)" and applying Theorem 4.7. Clearly.
higher powers of -M,., are introduced at each itcration. However. HMrm-nnder~s
condition H- is sufficient to ensure that M(-.' is in every LP(fl X ~.P,.I~ p < ~
We have, therefore, proved the following result:

THEOREM 5. 1. Suppose condition H is satisfied. Then the random variable

x1, 1(x11, yo), the solution of the signal process, has a conditional density given Y, for
almost all v which is in C-(R d) for s >_ t and s -- t. That is, under condition H thle
prediction , filtering and smoothing problems have a smooth density solution.
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Abstract: Using the Ito differentiation rule, the properties of stochastic flows and the unique decomposition of special
sentimartingales. the integrand in a stochastic integral is quickly identified.

Keywvords: nmartingale representation. Malliavin calculus.

Introduction

It is well known that a martingale with respect to the filtration generated by a rownian motion is a
stochastic integral of the Brownian motion. There have been many derivations o. ne iraegrand in this
representation; see Clarke (1970/71), Haussmann (1979), Bismut (1981) and Davis (1980). In this ntote we
give a very short derivation in the Markov case using the properties of stochastic flows and the unique
decomposition of special semnimartingales.

Flows

Suppose IV = (s',..., w'1) is an n-dimensional Brownian motion on a probability space (Q. JY. P').
Consider the stochastic differential equation

dx, =f(t, x,) dt + a(t, x,) dw, 1

for t z:0, where f :[0, co) XR' - R' and a: [0, co) XR' - R' XR' are measurable functions which are
three times differentiable in x (E R'. Write ,J(x) for the solution of (1) for s >_ f. having initial condition

.()= x. Then from the results of Bismut [11 there is a set Nc: Q such that for w G N there is a version
of ,1,(x) which is twice differentiable in x and continuous in t' and s.

Write z, =a ,5/ax for the Jacobian of the map , Then it is known that _-, is the solution of the
linearized equation

fd z, 'f,(s, xJ)z, ds + a.,(s, X,) Z' CIW,

with initial condition z, = I, the n X n identity matrix.
Consider 01 < t < , an initial -condition xo o Rra iei0adafnto (Txo)) of the final

position of the trajectory. Here c is a differentiable, real valued function on R' such that c( OrT(xo)) and
cj( ,T~0))are integrable. Write ( F for the right continuous complete family of ar-fields generated by

crws: S( 1<).

0167-7152/88/S3.50 '0 1988, Elsevier Science Publishters O.V. (North-Holland) 327
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Then M, =EIc( 0.r(xo)) IF,] is an ( F, )-n~artingale. and-so by. Wo example. Theorem 12.33 of [4]. Al, Ri
has a representation

M, MO + fo. dw (2)

where y is an (F,)-predictable process.

Theorem q

y, =E,c ( SO. xo )) ax f~ ) ,(S OI o)). B

C

Proof. For 0 _< t T write x = 0 ,(x0 ). so that, by the semigroup property of the stochastic flows,

o.T(xo) = ,.rk( o.,(xo)) = £,A )

Then

AM, = EHc(O.T(Xo)) I F1= E[c( ,.-(x)) I Fj = Ejdc( ,T-(x))1

= V(t. x). say.

As noted above. ,T(x) is twice differentiable in x. The differentiability of EfC( ,T(X)) I ,] in i can be
seen by writing the backward equation for ,-(x) as in Kunita [7]. However, x = 01(x0 ) so expanding
Vu(. C0 (x) by the Ito rule

V(I. 01(x)) = ,'V(O. X0 ) +f~ s. 0, (x 0 )) + L 11(s. 0, (x 0 ))) ds

Here.

L + a where a (i, x,) is the matrix ou'.

H-owever. j-

M, is certainly a special semimartingale. so the decompositions (2) and (3) must be the same.
In particular, equating the martingale terms we have

=EXcf(4OTAXO)) ax5 T (X) Jc s 0 (xo))

328
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Rematrks

As there is-no bounded variation term in (2) we must also have immediately:

-(s. 60.j(x)) + LV(s. 1,_(xJ~) = 0 W~ith V(O. x11) =El C( o'(x,1 ))1 -

The techniques can be extended to more general martingales ats in Davis (1l980). Similar techniques
quickly give the results of the Nialliavin calculus in this situation.
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cations. of Mathemaices IS (Springer. Berlin).
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41. 1281-1295. and 42, 177S. Kunita. H. (1982). Stochastic Partial Differential Equations

Davis. M.H.A. (1980). Functionals of diffusion processes as Connected with Non.Dnear Filterinji. Lecture Notes in
stochastic integrals. Mfath. Proc Comb Phil. Soc. 87, Mathematics 972 (Springer. Berlin).
157-166.
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INTEGRATION BY PARTS, HOMOGENEOUS CHAOS
EXPANSIONS AND SMOOTH DENSITIES'

By ROBERT J. ELLIOTr AND MICHAEL KOHLMANN

University of Alberta and Universitdt Konstanz

By iterating a martingale representation result a homogeneous chaos

expansion is obtained. Using-the martingale representation, the integration.
by-parts formula of the Malliavin calculus is derived using propertiog of
stochastic flows. The infinite-dimensional calculus of variations is not re-
quired.

1. Introduction. Since Malliavin's outstanding breakthrough [9] there have
been other treatments and simplifications of the Malliavin caiculus. including
those of Bismut [2], Stroock-[11], Bichteler and Fonken [1] and Norris [10]. In
this paper we apply a very simple- representation of the integrand in a stochastic
integral, Theorem 3.1, to first derive the homogeneous chaos expansion of a
certain random variable.-An integration-by-parts formula-is obtained and, if the
Malliavin matrix _M has an inverse which- belongs to every LP(Q2) (a condition
guaranteed by Hbrmander's H, hypothesis), it is shown the diffusion has a
smooth density. The principle simplification in- this paper is -the observation that
by considering an enlarged- Markov system only the simple stochastic integral
representation of Theorem 3.1 is needed. No infinite-dimensional calculus is
required.

2. Flows. In this section we recall some definitions and properties of sto-
chastic flows on d-dimensional Euclidean space. Suppose w, = (w,..., wfl'),
0 < t, is an m-dimensional Brownian motion on (0, F, P). Write (F) for the
right-continuous complete filtration generated by w. Let X0, X,,..., Xn be
smooth vector fields on [0, co) x Rd all of whose derivatives are bounded. Then
from Bismut [2] or Carverhill and Elworthy [4] we quote the following result.

THEOREM 2.1. There is a map : QX [0, c) x [0, c*) X Rd -- Rd such that:
(i) For 0 < s < t and x ( Rd .,(X) is the essentially unique solution of the

stochastic differential equation

(2.1) d.,,,(x) = Xo(t, ,.j(x)) dt + X,(t, ,,.,(x)) dw,

with ,.,(x) = x. (Note the Einstein summation convention is used.)
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(ii) For each (j, s, t the map ,.) is Co on Rd - Rd with a first derivative,
the Jacobian, a , Iax = L,, which satisfies

'-X°Ot, ,.t(x))D,,.tdt + dy(t, .. (x))D,.,dw],

(2.2) dD"'. - ( (" -d-

with initial condition D = I, the d x d identity nmtrix.
(iii) IWt w. la" x ' is the second derivative, then

ax0  ax,d as o t -0(t x)xW. d ( t, .,Jx)) W,,, dw,'

(2.3) ax ~
+ -j-(t, 4,.(x))D,, ® ¢,, dt + - -(t, e,.,(x))D,,, ® D,,dw],

with W = G (Rd ® Rd) ® Rd.

REMARKS 2.2. Note that (2.2) and (2.3) are obtained formally by differenti-
ating (2.1). However, if we consider the enlarged stochastic system given by
(2.1)-(2.3) for ( D. , , W.,), the coefficients are not bounded. Nevertheless,
Norris (10] has extended the results of Theorem 2.1. to such systems. To state
Norris' results we first define a class of "lower triangular" coefficients.

DEFINITION 2.3. For positive integers a, d, d1,..., dh write S(d,,..., dk)
for the set of X - CO(Rd, Rd) of the form

X() (xIX) x2

(2.4) X(x) , forx=

X(k)(xi, x2 ,..., xk) Xk

where Rd is identified with Rd. x ... x Id *, x: - Rd , and the X satisfy

(2.5) IIXjsI.,v.N = sup sup V sup ID X1)(x)j < 00,
xeff O5n:N (1 + IXI') Ij - k

for all positive integers N. Write S(d,..., dk) = U,,Sa(d,...., dk).

REMARKS 2.4. Note (2.1)-(2.3) can be considered as a single system whose
coefficients are not bounded but are in S(d, d', d3 ). The final supremum on the
right of (2.5) implies the first derivatives of X( are bounded, as are the first
derivatives D. in the "new" variable x- of X(J(xI,.... xi). This means XI ) ) is
allowed linear growth in xJ, a situation illustrated in (2.2) and (2.3). We quote
from Norris [10) the following result.
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THEOREM 2.5. Let X0, X1 ... , X, re Sa( d,..., dk). Then there is a map
q x [0, w) x [0, oo) x R" - R" such that:

(i)Fo 0 t nde d' (,sIx)ithessentially unique solution of
the stochastic differential equation

(2.6) d,=Xo(x,) dt + X.(x,) dw,,

with x, x.
(ii) For each cj, s, t the mop 0(wo, s, t, x) is C"' in x with derivatives of all

orders satisfying stochastic differential equations obtained from (2.6) by formal
differentiation.

(iii) sup E sup Dpos, ui, x)I~
(2.7) jxjRt~

:5C(p, s, t, R, N, dl, .. ., d,,,, aIIX01l,(a. N)'* ... mlSo.N)

REMARKs 2.6. Norris proves Theorem 2.5. by induction on . Write (2.6) as a
system of stochastic differential equations for j =,.. k,

(2.8) t X I Ix~

x = xi Rd,.

Suppose the result is true for I,-., j - I and write .X' (t.,, s, t, x')
Xj~)(x'(),..,xi-'(w), x'1). Then (2.8) can be written in the form

civ )g0(s t, xf) dt + -g(s, t, xJ) dw,

and Theorem (2.1) applied. The difficult step is establishing the result for j 1
However, this follows using a stopping argument, a technique employed by
Bismut [2, 3). Using the notation of Theorem 2.1, the following result is well
known,

LEMMA 2.7. For 0 < s :5 t write V.. for the solution of

(2.9) d

with V,, = LThen D ,1'V,. =, the d xdidentity natix.

PROOF. Applying Ith's rule to V,.D, we see d( 1, Dg1) =0. However,
V, .D,. Lo0



INTEGRATION BY PARTS IS7

REMARKS 2.8. An application of Jensen's, Burkholder's and Gronwall's in-
equalities shows that sup, 6 u: f jD, u, sup , . j , W.1 and sup, 5 U r 11 V, .1 are in
LP(2 ) for all p < oo. Alternatively, this conclusion follows from applying
Theorem 2.5 to the system (2.1)-(2.3) and (2.9). For 0 < s < t, by the uniqueness
of the solution of (2.1)

(2.10) = if X
= .,(x), if X = o. (Xo).

Differentiating (2.10), using the chain rule,

(2.11) Do., = D,,Do. ,

and

(2.12) WO., = W.J'0(D®o.) + DWo.

3. Representation and series expansion. Suppose 0 < t < T and 6., (xo)
is the-solution of the stochastic differential equation (2.1). Consider a real-valued
twice continuously differentiable function c for which the random variable
c(O.r(XO)) and the components of the gradient c ( 0.T(x 0 )) are integrable. Let
M, be the right-continuous version of the martingale

We then have the following representation result.

THEOREM 3.1. For 0 < t < T, M t = E[c(6,o0 (x0 ))] + f'y,(s) dw', where
y,(s) = E [cj(O.T(xo))Do.lF] Do.IX,(s, O.(Xe)).

PROOF. It is well known (see [5], for example) that any F-martingale M, has
a representation

(3.1) A = MO + foy,(s) dw.,

for some predictable integrands y,. Because the process 6o.,(xo) is Markov

Mt= E [c( 0oT(xb))F,1

(32) = E[C((,T(X))F
(3.2) = Et~x[C(6tT(X))j

= V(t, x), say, where x = 6o,(Xo).

By the chain rule and Theorem 2.1, c(6,,T(x)) is differentiable, in fact smooth, in
x. The differentiability of E[c(6fT(x))jF] in t can be established by writing the
backward equation for tr(X) as in Kunita [8]. Consequently, applying the It6

== --- ~ -- = -
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rule to V(t, x), with x = .,(xo),

v(t, fo.,(x,,)) v(O, xo) + T(,j-- +V)
(3.3)

where

d a d ,In~ 2

i-I dx, 2 '

By the uniqueness of the decomposition of special semimartingales, comparing
(3.1) and (3.3), we must have (as is well known)

dV
- +LV=O,
ds

and
dVY'(s) = a (S', ,o.,(Xo))X(s, 6o.,(Xo))

From (3.2)

8V

dx =E[ Cj(~s.(X))Ds TIFs]

so by (2.11)

y,(s) = E[c( O r(xo))Do. rIj] DJX,(s, 60 ,(xo)). 0

REMARKS 3.2. Note in particular the representation

C( oT(x)) = E[c( o.r(Xo))

(3.4) TE [ce(6,T(XO))DOTI,]D Xi(S, (,JX) d4'+fo

Theorem 3.1 can be extended immediately to vector (or matrix) functions c.
Finally, it seems the proof of Theorem 3.1 can be extended to the non-Markov
case ([6]).

3.3 NOTATION. Write 6(o) = 6 for the solution flow of Theorem 2.1, and
D(°) = D for its Jacobian given by (2.2). Write a" for the d + d2 -dimensional
process with components 6M = ( o, D 0)). Write D ') for the Jacobian of this
d + d2-dimensional process. Write -) for the process .(2) = (60), D(1)) and so
on. Then (r+l) = ( D(n)). Note (n) is a process for which the stochastic flow
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results of Theorem 2.5 hold. Write

acc v) ,v .m-r x o , ) Tl  . ( r..T( XO) )DO. T '

0' ,T\O ! (x(() OT " D].L'O.

and so on, so

acln) ,

.. i ) ( n + , ( 4 o .+ , ) ) = __d c ,,) n )x , , o) ( ,
"~~0 ,'OTO ()\OT\ 0 0, o,"

Note the initial condition at 0 for the variable D(') is always the identity matrix
of appropriate dimension. Write X," ) for the vector field coefficient of w' in the
stochastic differential equation defining (n) and abbreviate

XW ( ())) as x "n).

Then by iterating Theorem 3.1, we have the following representation of the

random variable c(o.r(Xo)).

THEOREM 3.4. If c has bounded derivatives of all order, then for any n,

c( o.T(X))= E[C( OrAX0 )) + ._ ,)!
k-I

+ fT(j S, (fs' [c(1 Do()X (s ) dw/) ...

xD; X,(s) dw,.

PROOF. From (3.4)

c( or(Xo)) = E[c( o.A(0))l + JTE [c"'1F]DJ.X,(s)dW"

= E[c] + E[c(I)]fTD JX,(s) dw.
0

+ ' (2)d j-Id &X(s dw/.

The result follows by repeated application of the representation of Theorem
3.1. o

310<

t4
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REMARKS 3.5. In principle, it is possible to write the previous expansion in
terms of Do., Wo, and higher derivatives of the diffeomorphism (,, rather
than by considering higher and higher dimensional systems. However, this gives
rise to very complicated formulae. Consider the case when d =1. Then
(V(ol, 0()) is two dimensional and by Theorem 3.1

Ej() ')~ E ICM(0 rT(X0))D0,TI

+f E I CC(C T )DOTD,,.T
0

(.)+cc(e.UT(X))uV.rDOj.F,,XZ(u)dwv.

+f 8 EIcj(Eu(xo))Du,TjFu] O-'(u) dw.

Here we are writing O,T(XO) = u.,r(x), where x = 0,j(xo), arid BC T =Du.TD,
where D = Do,. Note the final integral in (3.6) is a result of differentiating in

the D variables. Recalling (2.11) and (2.12), we have

E~c1)((1)jF = E [cM(0T(X0))D0.TI

0

* +Cf( 0 T(XO))WOrI1~u DjJUX 1(U) dW,

(3.7) -f'E I(c ,(rXO))DO,Th1DIT'WO,uXL(U) dWU
0

+jfoEfICM0r(X0))D0,TIFJDU1 (u) dw,,

E C E ,oT xC))DOT1] + j ( u, 2) dw 1J

where

y1(u, 2) a(u, 2, I)Dj 1X,(u) - a(u, 2,2)D WoX 1 (U)

(3.8) aau22) xj~

Here

a(u,2, 1) =E[ccc( 0T(XO))DO2T +CC( OI(XO))WJTIFI

and

a(u,2,2) =Ect(eo.T(xO))DOT1FuI.
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Substituting (3.7) in (3.4), we have
c(, T(x,))= [c( .,{(xo))] + EJc4(o.T(xo))Do, f 7 D,x( , dw

00
(3.9)

1.1 turn, the martingales a(u,2, 1) and a(u, 2 , 2 ) can be expressed as stochastic
integrals. Substituting again, we have

C(O,.T(XO)) = E[c( o.T(xo))] + EJc,( oT.(Xo))DoT ,J D;IX,(s) du'
(1

+ EICJ(( O.T(X0))D2.T + CC( o,(Xo)) WO.T]

x fS(fS,,b'x,(u) w')D(Xi( s d,,

Ef~~o(o)Dn ()Di~o~ uXj(u) dwd) DJ2X,(s) dtw ,
(3.10) +Ec(~ OT(Xo))Do'r f "#(fD -

oI I_(u)I dw )DJS(s)dw

+3.10) jyk(v,3) dw) D X -(u) dw

JsJIAs: dw';1D2W ,)_
+ (fyk(v,5)dw k)D-.u dw1 JDX,(s)dw:.

REMARKS 3.6. Theorem 3.4 [or (3.10) in the one-dimensional case] indicates

how a "Taylor series" expansion for the random variable C(4O.T(Xo)) can be

obtained as the sum of multiple stochastic integrals.
The coefficients of the stochastic integrals are functions of the expected values

of C(4,.T(X0 )) and its derivatives, and the Jacobian Do r and its derivatives. The

integrands in the multiple stochastic integrals do not involve c, but are functions

of the Jacobian and its derivatives, and the coefficient functions X,. By unique-

ness the expansion isgthe same as the homogeneous chaos representation. This

expansion can be used to investigate variations about the expected trajectory

and large deviation problems ([7]).

COROLLARY 3.7. Taking C(6O.T(Xo)) = 4.T(Xo) e Rd, so c, = 1d, the d x d

id2ntity matrix, and c , = 0, (3.4) gives

OT(XO) = E[i 0.T(x 0 )] + fT[DF]D iXdw

with corresponding higher-order expansions.

~ -
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LEMMA 3.8. Write * to denote the transpose. Suppose c and g are real-val-
ued, differentiable functions such that the random variables c(o..(XO)),
g( 0 7#.(x0 )), C(o, (Xo)), g( 0 .T(x 0 )) are in L2(n). Then

E I C(o. (xo))g(o.i(xo))]

= E[c( T(Xo))] E[g(,).(Xo))j

+E[Y2 fE[cJ (rX0))D0,T1Fs

×Dj.,'Xi(s)X,*(s)Do*,'E[gt*( o.T(x 1))IF,] as.

PROOF. By Theorem 3.1

g( o.T(Xo)) = £[g( o.T(xo))J + jfE[g,( o.T(Xo))DOTIo. DI, ,DX,(s)dw:.

The result follows by taking the expectation of the product with (3.4). (Note

g* = g.) O

DEFINITION 3.9. The nonnegative matrix
m

M..= t f t D, (u)Xi*(u)D 8 ,*
i-I

will be called the Malliavin matrix for the system (2.1). Note that something
similar to MoT, appears in Lemma 3.8. In some references, [11] and [12], the
matrix DO, TMo.TDo*T is called the Malliavin matrix.

4. Integration by parts.

THEOREM 4.1. Suppose c is a twice continuously differentiable scalar func-
tion such that (4OT(xo)) and c (eo.T(xo)) are square integrable. Then for any
square-integrable predictable process u(s) = (u l(s),..., urn(s)),

E[c( OrAxo)) f T ui(s) dwj'

i- [Xi (s)u(s) d.

PROOF. Using the representation (3.4),

E [c(EO T(XO)) Eui(S) dwX u

E fD( rD D-
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and by Fubini's theorem this isni fTD,  ]i')U,()d
= I E[c ( 0 r(Xo))D0 .f D,,Xs)u 1 (s) ()s . 0

COROLLARY 4.2. The result is still true for vector- (or matrx-) valued

functions c.

COROLLARY 4.3. Taking each u((s) to be (D(.'X,(s))*, we have

[C( 0. (Xo)f(.s)) dwj = ' Efc0( .(xo)) DoTMO, TJ

COROLLARY 4.4. Consider a product function

h( o.(Xo)) = r( T(Xo))g( T(Xo))

satisfying the conditions of the theorem. Then

E ~c( E,T(xo))g( ), (xo))fT( DJ'X(s))* dwj
(4.1) --

+ c( T(Xo))gi( O.r(Xo)))Do. TMO. Tl-

REMARKS 4.5. What we would like to do in (4.1) is take
-l -lT

so that we can obtain a bound for c(. However, D-4 and M-;. involve the past
of the processes LOT, D0.T, Mo.r" This difficulty can be circumvented by consid-
ering an enlarged system, similar to the technique used in Section 3. However,
the sequence of enlarged systems is different to that discussed in Section 3, so
different notation will be used. Note that even when the original process is one
dimensional the method leads to a discussion of higher-dimensional processes, so
not much simplification is obtained by taking d = 1.

4.6 NOTATION. Write 0°)(w, s, t, x) = .,(x) for the stochastic flow defined
by (2.1). Now Df 0)(x) = D,.,(x) denotes the Jacobian of the flow 4,(o). From (2.11),
if D = D., and x = o,(Xo),

D,,(x,) = D,.,(x)D,

so the system (,(O), D(O)) is Markov. Write R(0).(x) f '(D£,X,(u))*dw', and
R . Then R() R + D-'R(,),(x), so the system (,(o), , R(O)) is Markov.
Finally, recall the definition (3.9) of M,, and write M( ) - M,, M = M.( )

Then M €0 ) M + D -M, (x)D*- and the system

in) 1 i~ rf .101fl ~O'
DO, A
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is Markov with coefficients in

S(d, d + d 2 ,2d+ d 2,2d + d2).
Consequently, Theorem 2.5 applies to this system and its stochastic flow -0".
Note that M,,, is the predictable quadratic variation of the tensor product of
R,,, with R .Write Xi(') for the coefficient vector fields of w' in 0). Further-
more, write D~'for the Jacobian of 0, R(0 f.(D.!IX )(u))* dw' and M(')
for the predictable quadratic variation of the tensor product of R(') with R(*,
which we shall denote by

M(') =(R('.),, R(,..

Then define
02) =((,1, DO ), R(l), M(l)),

So (2) is a Markov process for which the results of Theorem 2.5 hold. Proceeding
in this way, we inductively define (n+I) = (O(n), Din, R(n,, M(,)), where R'n) =
f.'D.n)-X,5)(u)) dw. and M in7 = (R n)® R(0 ). Write v, for the gradient
operator in the components of 0().

THEOREM 4.7. Suppose c is a bounded CO scalar function on Rd with
bounded derivatives. Let g be a possibly vector- (or matrix-) valued function on
the state space of (n) such that g(o(n)(O, T, X0)) and vg(,On)(0, T, xo)) are both
in some L P(Q). Then

E c((°)(0, T))g(("'(0, T)) 9 R(.)
=E [(voC)(€1°)(0, T))g(,O-)(0, T))D0.TMo.T]

+ E[ c(o¢'°(0, T))( V~g)(0n"(0, T))D~oWMO ).]

PROOF. Applying Theorem 3.1 to cg, we have

c(0(°)(0, T))g(0)(O, T))
E I c(,00)(0, T))g( ")(0, T))]

+ foTE [(Voc)(.0o)(0, T))g(on)(O, T))D. TIF D X,(s) dw:

+ foTe [c(,o0)(o, T))(v g)(,O)(o, T))D0(n)IFj D 'X,('(s) dw'.

Taking the tensor product with R(.)* and the expected value, the result follows.

REMARKS 4.8. To write out the preceding result in terms of Do,, Wo., and
higher derivatives of the flow involves very involved calculations. Even in
dimension 1 it seems better to introduce the sequence 4.0) of flows. Note
Theorem 2.5 implies .,I are in every LP(Q2). Theorem 4.7
is an integration by parts formula as only one term involves the gradient of

__ _ _ _ _ __ _ _ _
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derivatives Voc = c, of c.

COROLLARY 4.9. Taking g(-)0(0, T)) = Mo4TDo', if M-o is in some L P(.),

(.)E~ct( 0.T(xo))j = E[c(6otjxo))M rD 4 OR'(4.2) T T 0
- E[ c(60o. (Xo))( V g )( Do.TrMo.,) D(')M ') •

Because the remaining terms are integrable we have, therefore, proved the
following result.

THEOREM 4.10. Suppose . t(xo) is the solution of (2.1) and c is a bounded
smooth function with bounded derivatives. Then if M-T is in some L P(Q),

(4.3) IE[ cj(o. T(xo))I K sup Ic(x)1.
XER d

REMARKS 4.11. It is well known that inequality (4.3) implies that the
random variable EOT(xo) has a density (see Malliavin [9] or Stroock [11]). The
remaining question concerns the existence and integrability properties of Mo .

These have been carefully studied (see Malliavin [9], Stroock [11] and Norris
[10]). In fact, it is known that M - 4 is in LP(Q) for all p < oo if the following
condition HI of H6rmander on the coefficient vector fields X0 ,..., Xm of (2.1) is
satisfied.

CONDITION HI. Xl,..., XM,[X, Xj], for i, j = 0,..., m, [X,,[Xj, Xk]] for
i,j, k = 0,..., m, etc. evaluated at x0 e Rd span Rd.

Finally, recall that, if u is a nonsingular linear map of Rd to itself, then the
map -p: u - u- 1 has a derivative p'(u), which is a linear map on the space of
linear maps of Rd to itself, given by p'(u)h = -u-'hu - '. Applying this to
g(D0~,T MO) = Mo. Dor, we haveE(oT [or CE -lT(X)

= E[C(O, T(XO))MoT1DjITo R(.)]
(4.4) + E C0.T c(o (x 0 )M; ( V IMO. r)( DO. MT .M;. T •

5. Bounds for higher derivatives. To show the density of O.T(xo) is
differentiable, we must obtain bounds for higher derivatives of the form

(5.1) IE[ ( OT(XO))1 < K sup Ic(x)l.
ILv'1.i xreRd
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Here a = (al,..., ad) is a multiindex of nonnegative integers and

an a aa 0,,

In fact, a well-known argument from harmonic analysis (cee (10]) implies that if
(5.1) is true for all a with Jal = a, + -.. +ad < n, where n >_ d + 1, then the
random variable 6O.T(xo) has a density d(x) = d(xl,..., Xd) which is in
(n -d-I(Rd).

To sae how to proceed, apply (4.2) to c, in place of c. [If preferred, (4.2) could
be applied to just one partial derivative ac/ 4 in place of c; however, the result
of Corollary 4.9 is true for vector functions c.] This gives

E[c,,6or.(xo))I = E[cc(6o,-(xo))M 'D' ® R'
(5.2) -E[ ci( o.r(xo))(Vig)( Do., Mo.T)DO'TMO ')Ti

Consider the two terms oti the right,

(5.3) E[I( o?0(Xo))Mj.rT I Ro.T]

and
(5.4) E[ C,(0. T(Xo))(VIg)(D0. T,1 MO. T)D~oI)TMqoI)T.

5.1 NOTATION. Write M = Mo.T, D = DO.T, Dt') = D''IT, etc. Let
g(0')) be the function M-D - ' D RM-'D - ' and g2(.0()) be the function
(v T g)( D, M ) D('M(')M - 1D -'.

Applying Theorem 4.7 to c and g,, we have
E [C( o. T(Xo))91(01)) 0 RIo.

(5.5) =E1c,( O.T(XO))M;T~lD;T." RIO),T]

+ E[C(6o.T(x0))(V29 ),2)((o, ' T)).12)M1

Applying Theorem 4.7 to c and g2 we have
E[C(40,T(XO))92(-0 2) 0 Ro.T]

(5.6) = E[c,( 0.T(xo))(v71g)(Do.TM.T)D~I M~o(r]

+Ec(O. T (X0 ))(v3g2 )( a')(0, T))D(3 .M~O..

Substituting in (5.2), we obtain an expression on the right which involves only c
and not its derivatives. This procedure can be iterated, using Theorem 4.7. At
any stage, to replace a term of the form E[cj( O.T(Xo))h('¢")(0, T))] by one
involving only c define h(On)(0, T)) = h(-0n)(0, T))M;.D;' and apply Theo-
rem 4.7. Clearly, higher powers of M". are introduced at each iteration. fFrom
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Theorem 2.5 DOI.' is in every L'YS0).] HMrmander's condition H, is sufficient to
ensure that Mn I is in every L"(S2), 1 p < oo. We have, therefore, proved thle
following result.

THEOREM 5.2. Suppose Hdiirander 's condizion H, is satisfied. Then the
random variable 0 . (XO) has a density d(x) which i; in C-(R").
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THE PARTIALLY OBSERVED STOCHASTIC MINIMUM PRINCIPLE*

JOHN S. BARASt, ROBERT J. ELLIOTIt, AND MICHAEL KOHLMANN§

Abstract. Using stochastic flows and the generalized differentiation formula of Bismut and Kunita, the
change in cost due to a strong variation of an optimal control is explicitly calculated. Differentiating this
expression gives a minimum principle in both the partially observed and stochastic open loop situations.
In the latter case the equation satisfied by the adjoint process is obtained by applying a martingale
representation result.

Key words. stochastic control, minimum principle, adjoint process, stochastic flow
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1. Introduction. Various proofs have been given of the minimum principle satisfied
by an optimal control in a partially observed stochastic control problem. See, for
example, the papers by Bensoussan [1), Elliott [8], Haussmann [11], and the recent
paper [14] by Haussmann in which the adjoint process is identified. The simple case
of a partially observed Markov chain is discussed in the University of Maryland lecture
notes [9] of Elliott.

In this article we show that the minimum principle for a partially observed diffusion
can be obtained by differentiating the statement that a control u* is optimal. The results
of Bismut [5], [6] and Kunita [16] on stochastic flows enable us to compute in an easy
and explicit way the change in the cost due to a "strong variation" of an optimal
control. The only technical difficulty is the justification of the differentiation. As we
wished to exhibit the simplification obtained by using the ideas of stochastic flows,
the result is not proved under the weakest possible hypotheses. In § 6, stochastic open
loop controls are considered and a similar minimum principle with an explicit adjoint
process is derived in § 7. If the optimal control is Markov, the equation satisfied by
the adjoint process is obtained in § 8 using the martingale representation result of [10].
This simplifies the proof of Haussmann [12]. Finally in § 9 it is pointed out how
Bensoussan's minimum principle [2] follows from our result if the drift coefficient is
differentiable in the control variable.

2. Dynamics. Suppose the state of the system is described by a stochastic differen-
tial equation

Sd .16 = f( t, 6, it) dt + g( t, f,) dv,,

(, eR", eo=Xo, 0-t-5 T.

The control parameter u will take values in a compact subset U of some Euclidean
space Rk. We shall make the following assumptions:
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(A,) x0 is given; if x0 is a random variable and P0 its distribution, the situation
when r lxl P(d.,) <co for some q> n + -can be treated, as in [14], by including
an extra integration with respect to P0 .

(A,) f:[O, T]x R" x U-> Rd is Borel measurable, continuous in it for each
(t, x), continuously differentiable in x and for some constant K1 ,
(1 +txJ)-'If(t, x, u)l+lf.(t, x, u)-- K1.

(A3) g:[0, T]xRd--I Rd® R" is a matrix-valued function, Borel measurable, con-
tinuously differentiable in x, and for some constant K 2 , (g(t, x)1 + Ig,(t, x)l -

K 2 .

The observation process is given by

(2.2) dy,=h() dt + dv,, y,e R'", yo=0, 0=<t -T.

In the above equations w=(wt, . . ., iv") and v =(v, . . . , v ") are independent
Brownian motions. We also assume the following:

(A4) h: R" -> R"' is Borel measurable, continuously differentiable in x, and for
some constant K3 , Ih(t, x)l + Ihx(t, x)Jl--<K 3 .

Remark 2.1. These hypotheses can be weakened. For example, in (A4), h can be
allowed linear growth in x. Because g is bounded, a delicate argument then implies
the exponential Z of (2.3) is in some L P space, I <p <co. (See, for example, Theorem
2.2 of [131.) However, when h is bounded, Z is in all the L P spaces (see Lemma 2.3).
Also, if we requiref to have linear growth in it, then the set of control values U can
be unbounded as in [143. Our objective, however, is not the greatest generality but is
to demonstrate the simplicity of the techniques of stochastic flows.

Let P denote Wiener measure on C([0, T], R") and A denote Wiener measure
on C([0, T], R '). Consider the space fl = C([0, T), R") x C([0, T], R") with coordi-
nate functions (w,,y,) and define Wiener measure P on 0 by

P(dw, dy) = P(dwv)l(dy).

DEFINITION 2.2. Write Y={ Y,} for the right continuous complete filtration on
C([0, T], R.') generated by YO = o{y: s- t}. The set of admissible control functions
U will be the Y-predictable functions on [0, TI x C([0, T], R") with values in U.

For ue U and x _ R" write e(".x) for the strong solution of (2.1) corresponding
to control it, and with 6j'(x)=x. Write

(2.3) Z,.,(x) = exp h ('"r(x))' dy - h(e"(x))2 dr)

and define a new probability measure P" on fl by dP"/dP = Z. (x). Then under P",
(f .,(xo),y,) is a solution of (2.1) and (2.2), that is, f0,,(X0 ) remains a strong solution
of (2.1) and there is an independent Brownian motion v such that y, satisfies (2.2). A
version of Z defined for every trajectory y of the observation process is obtained by
integrating by parts the stochastic integral in (2.3).

LEMMA 2.3. llnder hIprh,,, (A 4)jfr A N ;

E[(Z,,( Xo))P) <oo for allue U and all p, l<p<o.

Proof

Zg, (XO) = I + ZO,(r(xo)h('o,(Xo))' dy,..
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Therefore, for any p there is a constant C, such that

[1 + E (f: (Z o.(Xo))
2h( .r(Xo))2 dr p/2

,~0 0[Zo(X) 0,o I+

The result follows by Gronwall's inequality.
Cost 2.4. We shall suppose the cost is purely terminal and given by some bounded,

continuously differentiable function

which has bounded derivatives. Then the expected cost, if control it E U is used, is

J(u)= E[C(Go.T(XO))].

In terms of P, under which y, is always a Brownian motion, this is

(2.4) J(u) = E[Zo.T(Xo)C(EoT(Xo))].

3. Stochastic flows. For u r= U write

(3.1) E.,(x) = x + f(r, E,(x), ur) dr+ g(r, f,(x)) dw,

for the solution of (2.1) over the time interval [s, t] with initial condition x.
In the sequel we wish to discuss the behavior of (3.1) for each trajectory y of the
observation process. We have already noted that there is a version of Z defined for
every y. The results of Bismut [5] and Kunita [16] extend easily and show the map

';,: R" ' R'

is, almost surely, for each yc C([O, T], R") a diffeomorphism. Bismut [5] initially
gives proofs when the coefficients f and g are bounded, but points out that a stopping
time argument extends the results to when, for example, the coefficients have linear
growth.

Write IIE"(xo)l,- SUpo.:;, l o,("xo)J. Then, as in Lemma 2.1 of [13], for any p,
1 - p < oo, using Gronwall's and Jensen's inequalities,

-CO f g (o1+or, o.,(Xo)

almost surely, for some constant C.
Therefore, using Burkholder's inequality and hypothesis (A3), 11E"(xo)[1 r is in LP

for all p, l<p<o.
Suppose *6 EU is an optimal control; then J(ut*)-J(i) for any other it6 U.

Write *() forE.(). The derivative O*,(x)/Ox is the matrix solution C, of the

(3.2) dC, f (t, E,(x), u*)C, dt + 7 g ,(x))Cd)vd with C5 =I

Here I is the n x n identity matrix and g() is the ith column of g. From hypotheses
(A,) and (A 3), f and g., are bounded. When we write IIC -SUpo , , IC, I, an applica-

P tion of Gronwall's, Jensen's, and Burkholder's inequalities again implies I!CII r is in

- R : - --z' . '2 ., -7: - - . . .. . . . . .
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Ll for all p, 1:5 p <co. Consider the related matrix-valued stochastic differential
equation

D= IJ Drf.(, *,(x), u?'*)' dr - ZJDg)r rX)

(3.3) 
f, S: I, 

()r ~( ) d

+ Z D,(g!,)(r, r(x))')
2 dr.

Then it can be checked that D,C, =I for t 2 s, so that D, is the inverse of the Jacobian,
that is, D, = (06*,(x)/x-. Again, because f, and g, are bounded we have that IDIIf,
is in every LP 1 :5 p < oo.

For a d -dimensional semimartingale z, Bismut [5] shows that ,(z,) is well-defined
and gives the semnimartingale representation of this process. In fact if z,
z., + A, + H, dw' is a d-dimensional semimartingale, Bismut's formula states that

g(Z,)=z + (f(r, f'r'(Zr), it'+ *r + Pr ir(r) u ' O (Zr)J,

2, ex=O

(3.4) +1 OX-(HiH) ) dr

+1 f r Otr) dAr + r, Y g 9 (r,6*,())+ ~- (Z,)Hjd
ax OXJ 5 Ox r

DEFiNITION 3.1. We shall consider perturbations of the optimal control it* of the
following kind. For s e [0, T), It > 0 such that 0O5 s< s + h:_5 7, for any other admissible
control il e U and A 1'Y, define a strong variation of u'* by

U i*(l, w) if(t, w)<s,s+hjxA,

i7(t, wt) if (t,iv) E s, s +h] xA.

Applying (3.4) as in Theorem 5.1 of [7], we have the following result.
THE-OREm 3.2. For the perturbation it of the optimal control it* consider thle process

Then the process *,( Z,) is indistingutishable fromn e"(x).
Proof Note that the equation defining z, involves only an integral in time; there

is no martingale term, so to apply (3.4) we have 1-I, =0 for -ill i. Therefore, from (3.4)

~i~z)=x+f(r, C-*(z ), z4') dr

+g(r; 'J,(z)) div,.

However, the solution of (3.1) is unique so

Remark 3.3. Note that the perturbation u(t) equals 0*(t) if t > s+h so z, z,J,,

if t>s+h and

NI
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4. Augmented flows. Consider the augmented flow that includes as an extra coor-
dinate the stochastic exponential Z*, with a "variable" initial condition z e R for
Z*('). That is, consider the (d + 1)-dimensional system given by

(X)=x+ f(r, r,(x), u*) dr+ g(r, g*,(x)) dw,,

-Z*,,(x, z) = z + Z*,(x, z)h( *(x))' dy,.

Therefore, from the first equation in the proof of Lemma 2.3 we have

Z?,(x, z) = zZ*,(x)

d, 1S , 5= zexp (((x))' dyr.- l'r) dr)

and we see there is a version of the enlarged system defined for each trajectory y by
integrating by parts the stochastic integral. The augmented map (x, z)>
(6*,(x), Z,.,(x, z)) is then almost surely a diffeomorphism of R"'. Note that
OW(x)/Oz = 0, Of/az = 0 and ag/az = 0. The Jacobian of this augmented map is,
therefore, represented by the matrix

,= ( *a(x/ox 0az*.,(.C, z)/Ox O* C z

and for 1-5 i: 5d as in (3.2)

OZ.,(x,z) ' ('('OM(,(x)) Z)W.,(x)
-, f (Zs,(X-, Z) ' ,,X) xOx, J O k Ox,

+ h JW AO) ,(x, z)" dy;.
OaXi

(Here the double index k is summed from 1 to n.)
We shall be interested in the solution of this differential system (4.1) only in the

situation when z = 1, so we shall write Z*,(x) for Z*,(x, 1). The following result is
motivated by formally differentiating the exponential formula for Z*,(x).

LEMMA 4.1.

o .,(x) = z*,(x) hx( (x)) o,(x) v
Ox f S Ox

where v = (v', , v") is the Brownian motion in the observation process.
Proof From (4.1) we see OZ*,(x)/Ox is the solution of the stochastic differential

equation

OZ (X) Z '' r a;-(4.2) + ...,
(4.2) Z- = 3r(x) * r(x)') dyr.

Write

L,(x) = Z*,(x) hx ,. da ,

where

dy, = h(*,(x)) dt + dv,.
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Because

zs,(X I+ Z*(~h(*,x{ y
the product rule gives

ax a x

+ J r(X)h'( *r(x)) -hx -2xd

ILs,(x)li'( *,(x)) d'r±+f, Z*fr(x)J< Ox dyr.

Therefore, L,,,(x) is also a solution of (4.2), so by uniqueness

L5,(x)- ,(x)
ax

Remark 4.2. As noted at the beginning of this section we can consider the
augmented flow

and we are only interested in the situation when z = 1, so we write Z*,1(x).
LE-MM'A 4.3. Z*,(z,) = Z"'1(x) where z, is tMe semimarlingale defined in (3.6).
Proo. Z,",(x) is the process uniquely defined by

(4.3) ZI, (x) =I + fJ Z"r(x)h'( "r(X)) dy'r.

Consider an augmented (d + 1)-dimensional version of (3.5) defining a semnimartingale
=I=(zi, 1), so the additional component is always identically one. Then applying (3.4)

to the new component of the augmented process, we have

Z*5r(Zr) I + {Z.L'(Zr)IU*($,r(Zr)) d)"

1 + ZS~r(z,)h'(~r(X)) dy,

by Theorem 3.2. However, (4.3) has a unique solution so Z*,(z1 ) =Z",(x),

Remark 4.4. Note that for t > s + h

Zt,(z')= *(,/)

5. The minimum principle. Control u will be the perturbation of the optimal control
Uas in Definition 3.1. We shall write x = 0*x0 ). Then the minimum cost is

AIM* = [Z0*T(X0)C(60T(X0))1

= E[Z0*(X0)Z*TT(X)C(WT(X))].

The cost corresponding to the perturbed control u is

-~u E[Z0*X)ZST(X+,,)c"r(X ))3

E__ o, (XO) Z ZT40C*T( h)
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by Theorem 3.2 and Lemma 4.3. Now Z*T(.)adC~ ) r lotsrl ifrni

able with continuous derivatives and z~, given by (3.5), is absolutely continuous.
Therefore,

1(u) 0, J( z*)=S- ,~~(~~)

= Is, zr)(f(r, , Z) 4 -f(r, e*,(x), it*)) dr]

where by Lemma 4.1

r(s, Zr)=Z *(X'O)ZS*T(Zr4 C (*T(Zr)) ~~
ax,

+C(eST(Zr))f(J *(z) (z)x v

Note that this expression-gives an explicit formula for the change in the cost resulting
from a variation in the optimal control. The only remaining problem is to justify
differentiating the right-hand side.

From Lemma 2.3, Z is in every LI' space, 1 :_5p < o and from the remarks at the
beginning of § 3, CT = of*,-/ax and DT = (a*.T/aX'aei vr pc x
Consequently, r is in every LP space, I :5 p <ceo.

Therefore,

J(11)~ J (1* E[(P'(s, zr-) -F(s, x))(f(r, *r(zr), It,) f(r, C_5r(zr), u*))] dr

+ fSh E[(r(s, x) -F(r, x)(fr, Cr(Zr), 10. -f(r, f *r(Zr), Or~))] dr

+ E[P-(r, x)(f(r, S(ZA) 11r) -f(r, '*r(Zr), Or~)

+E[Fr(, x)(f(r, 6*(xo), u) f(r, 6*(xo), it*))] dr

= 11h)+2 (h+I~h+14 h),say.

Now,
s4

; K1Ii sup E[IE(s, z,) -Fr(s, x)I(1 +16, O)111)]

I I2(h)I S_ K2  E[1jF(5, x)-r(rs)I(1 + If"(xo)ll,J] ,dr

- K2h sup E[IF(s, x) - (rx)I(1 + lg"(x0)11,,)]

11(): K3  [f1'(iIr, 4) I1g*r( Zr) - W1(XII1 dr

SK3h sup EHIJr, x)I II".(x) -~xIS i
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The differences 1i(s, z,)-(s, x)I, I'(s, x)-I'(, x) and II.(x)- .(x)!l+,, are all
uniformly bounded in some LP, p 1, and

lim I'(s, z,) - r(s, x)I = 0 a.s.,

lim JI'(s, x)-F(,, x) =0 a.s.,
r- S

fira 1" (x) - .*(x)L+,,= 0.

Therefore,

lim 11l'(s, Z,) - I(s, x)Iip = 0,
'-5

lim 1It(s, x)-(r, x)j, =0, and

Jrn II(m.#i.(x)- .(x)Il, ,))Y =0 for some p.
h-0

Consequently, liml,-o h-'lk(h) =0, for k = 1, 2, 3.
The only remaining problem concerns the dillerentiability of

14(h) = E[I'(t, x)(f(r, *.j(xo), 1r) -f(-, 6*,(xVo), It*))] dIr.

The integrand is almost surely in L'([0, T]) so limh- 11 -'14(h) exists for almost every
se [0. T]. However, the set of times {s} where the limit may not exist might depend
on the control it. Consequently we must restrict the perturbations it of tie optimal
control it'* to perturbations from a countable dense set of controls. In fact:

(1) Because the trajectories are, almost surely, continuous, Y, is countably gener-
ated by sets {A,),}, i = 1, 2, for any rational number p r [0, T]. Consequently, Y, is
countably generated by the sets {A,,), p = t.

(2) Let G, denote the set of measurable functions from (fl, Y,) to Ua R k. (If
u _U then u(t, w)e G,.) Using the L-norm, as in [8], there is a countable dense subset
H,, {uj,} of G,,, for rational p c [0, T]. If H, = U,,. , H,, then H, is a countable dense
subset of G,. If it,, E H, then, as a function constant in time, it,, can be considered as
an admissible control over the time interval [t, T] for t->_ p,

(3) The countable family of perturbations is obtained by considering sets A,, E Y,
functions i,,, E H,, where p =S I, and defining as in (3.1) the following:

t { ii*(s, w') if (s, w) -[t, T] x A,,,
-uj,,(s, w) if (s, w) e [t, T] x A,,.

"Then for each i, j, p

(5.1) lim 'f E[I'(r, x)(f(r, 60*.,(-o), u*,) -f(, * Or(Xo), it*))] dr

exists and equals
ElF(s, x)(fls, *,(.xo), i,,) -fls, *JXo), 0*)) I,J,

for almost all s E [0, T]. Therefore, considering this perturbation we have

lim h -(J(t,,)-J(ti*)) = E[i(s, x)(f(s, ( )m -PS, 4,x 0L *)

->0 for almost all sE [0, T].

-'_
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Consequently there is a set Sc: [0, T] of zero Lebesgue measure such that, if s f*- S, the
limit in (5. 1) exists for all i, j, p, and gives

Using the monotone class theorem, and approximating anl arbitrary admissible control
itG UJ, we can deduce that if s~ 5 , then

(5.2) E[l'(s, x)(fls, *(.Y0 ), it) -fls, itx0  *))I,% Z2L 0 for any A E Y,.
Write

1) x)E*CAGT(YO) _.TX)+ C(f(,T(XO))k li6( *,J(X)) dvi;) IY, v JxJ

wvhere, as before, x = fO,(x 0v) and E* denotes cxpectation under P* = JU*. Then p,(x)
is the co-state variable and we have in (5.2) proved the following "conditional"
minimum principle.

Tii roRnlvI 5. 1. If 0 'E U is an optimal control there is a set S C [0, TJ of, zero
Lebesgue measure such that if s i S

E*I p,(x)f(s, x, 0*)1 YJ -- E *[p,(x)fls, x, t)j I',] a.s.

That is, the optimal control it* almost surely, minimnizes the conditional Hamiltonian and
the adjoin t variable is Ih(x).

6. Stochastic open loop controls. We shall again suppose the state of the sysiemf
is described by a stochastic differential equation

(6.1) d6, =,ft, ,, it) dt +g(,, 6,) dw,, ,s r" R , x,, 0O-; 1:- T

where x, and g satisfy the same assumptions A, A,, and A3 as in § 2.
Suppose It (it . .... w") is an ni-dimensional Brownian motion on a probability

space (fl, F, P), with a right continuous complete filtration f{F, O-:it - T Rather than
controls depending on some observation process y we now consider controls that
depend on the "noise process" w. These are sometimes called "stochastic open loop"
controls [4].

DiEFINITION 6.1. The set of admissible controls Y will be the F,-predictable
functions on [0, T] X fl with values in a compact subset V of some Euclidear space R'.

Remark 6.2. For each uc E there is, therefore, a strong solution of (6. 1) and wve
shall wvrite "J(x) for the solution trajectory given by

(6.2) 6""W(x = X + ff(r, Cjr(X, 11r) dr+ J. g(i, "'.(x)) dwr.

Again, because it is a (predictable) parameter the results of [2], [5], or [16] extend to
this situation, so the derivative O,/d0x(x) = C"', exists and is the solution of

(6.3 Ct' = I+j'fe(r, 4"r(W, 11r)C~'r dr+ g9~1 ; "XQ"dt~

Suppose D, i s the matrix-valued process defined by

I1-f D"', (f,(r, (x), It,) - )~I gdrtr

(6.4) C

~~if
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Using the Ito rule as in § 3 we see that d(D,.C.,) = 0 and D,C . I, so
Ds '., = (C'" )-1

As before, if

I!'(xo)ll, = sup Ie.(Xo)I,

JiC"IIT= sup ICo.,, liD"1iT= sup o.,,
Os5T O.vZT

then applications of Gronwall's, Jensen's, and Burkholder's inequalities imply that

II"(Xo)ilk, IIC"IIT, and ID"IT

are in LP for all p, 1-p<0o.
Cost 6.3. As in § 2, we shall suppose the cost is purely terminal and given by a

bounded C2 function
C(fO".r(Xo)).

Furthermore, we shall assume
Ic( x)l +ji ( x )l+ jc,( x)! <= K3(1 +jxj")

for some q < c.
The expected cost if a control u e Y is used, therefore, is

J(u) =[ )

Suppose there is an optimal control u* - V so that

J(u*):-J(u) for all u E Y.

Notation 6.4. If u is an optimal control, write e' for f"*, C* for C", etc.
DEI: NITION 6.5. Consider perturbations of u of the following kind. For s e [0, T],

h > 0 such that 0:-5 s < s + h: 5 T and A E F, define, for any other 17 E ,a strong variation
of u by

1(t, i) {u*(t, w) if (t, w)[s,s+h]xA,
i(t, i) if (, w)E[s, s+h]XA.

The following result is established exactly as Theorem 3.2.
TIEOREM 6.6. For any perturbation u of u* consider the process

(6.5) f x+ (zr) ) (f(r, , u,) -f(r, -(Zr', d

Then the process f*(z,) is indistinguishable from f,,(x).
Note if t> s+h, *,(z,)- *(z - * " x

7. An open loop minimum principle. Now

J(u*) = E[c(T(Xo))]

= E[c(*T(x))]
where x = t.,(Xo).

Similarly,

J(u) = E( O.T(XO))

= E[c(f$T(Z,+h))].

- ---
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Therefore,

J(it) -1(t1*) = E[C(fST(Z,+I,)) - 074 1

Because *7() is differentiable this is

As in § 5, this gives an explicit formula for the change in the cost resulting from
a "strong variation" in the optimal stochastic open loop control. It involves a time
integration over [s, s +h] and, again, the only remaining problem is to justify the
differentiation of the right-hand side of (7.1).

Write

S,) I., ) = ECW*T(z ,+,,))- r (*(Z))]

Ox ax

a7m1d

h(X) E.I C.() *)))) arx1

(7.2) Ee Is (s, s, X) F , p

where, as above, x =

Then arguments similar to those of § 5-but in fact simpler because Z is not
involved-enable us to show that there is a set Sc [0, T) of zero Lebesque measure
such that if s 9 S,

E[l'(s, s, x)(f(s, 6 0,(xO), iu) -f(s, .*,(.vo), u 0))la]>0

for any u E V and A E F,.
That is, in terms of the adjoint variable p(x) we have the following minimum

principle for stochastic open loop controls.
THEOREM 7.1. If E* V is an optimal stochastic open loop control there is a set

S c [0, T] of zero Lebesgue measure such that if s Z S
p,(xf~s~, u*<-_,(x~~s~x u)a.s.

for all it c V. That is, the optimal control it* ahnost surely minimizes the Hamiltonian
with adjoin t variable p, (x).

Remark 7.2. Under certain conditions the minimum cost attainable under the
stochastic open loop controls is equal to the minimum cost attainable under the Markov
feedback controls of the form u(s, o.,(ox)). See for example [3], [12]. If 1uM is a
Markov control, with a corresponding, possibly weak, solution trajectory ",then 1A

can be considered as a stochastic open loop control UAI(w) by putting

S00 ( w Y U(s, 6"' (Xo, w)).

This means the control in effect "follows" its original trajectory ", rather than any
new trajectory. That is, the control is similar to the adjoint strategies considered by
Krylov [15]. The significance of this is that when we consider variations in the state
trajectory , and derivatives of the map x -> f,,(x), the control does not react, and so
we do not introduce derivatives in the u variable.
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If the optimal control u*' is the Markov, then the process * is Markov and

p,5 (x) = E[I~s, s, x)j Fj

(7.3) = E[F(s, s, x)I x).

8. The adjoint process. Suppose the optimal stochastic open loop control i(' is
Markov. The Jacobian 8OCT/Ox exists, as does (WgT/aXY1 and higher derivatives.

THE-OREM 8. 1. Suppose Mhe optimal control u* is Markov. Then

p, (x) =E [ q (4 (XO)) CO.,] - rf',,O)4' { XO u*) dr

+fo'p, r, 0*jxo))g(r, *r(Xo)) dwv,

-fo INr, aurxo))gr, G*(XO))g(r, 0*JY)) Ar

Proof. Write ff (r) for ff (r, f0r(xO), it" and g(r) for g(r, *(.v)), etc. By unlique-
ness of the solutions to (6.1)

(8.1) fO.T(XVO) = T*X)

so, differentiating,

(8.2) CO, T =C,TCO,,

where CO.T = C0*T, etc. (without the *
From (7.2) and (7.3)

so from (8.2)p,()=E[4 
*TX)CTIF

(8.3) P W)CO,,= E [ Cf (T(XVo)) CO.rI Ff,

and this is a (P, {F,}) martingale. Write x = U(x0 ), C = C,,.. From the martingale
representation result [10], the integrand in the representation of p,(x)C as a stochastic
integral is obtained by thle Ito^ rule, noting that only the stochastic integral terms will
appear. These involve the derivatives in x and C. In fact, by considering thle system

G., with components f*, and CO, and any real C' function d), the martingale

MAl - I TF= EB(FT)x C] = V(s,., C)

=V(0, -x0, 1) + Vjr(i Cr(xo), Co,,)g(r) dw,

+ Z VC(r, *r(XO), CO,r)gf (r)COr dwVr

(8.4) p,,(x) C EC Ec( o. T(Xo)) COT] + .0 Mr,4 Ur(XO))g(r) dsvrCO~r

+ PrG' I 9(1()C dwt~k
kl 1
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Recall that D,,, = C-,so forming the product of (6.4) and (8.4) by using the 1t6 rule.
we have

p,,(x)= p())D.

=E[c (G*r(x-o))Co.TJ - p,( rJxo))f r)d

o' (r c - + f 0. p(~(x)gk)(r))2 dr

+foPx(r, Gr~xo)g(r) dl'r+Z Jp(~~o)~) r

fo k PI J pr, ~()grgk)(r) dr- *, (~x0 ))(g(")(r))2 d

= E[cfW(.r(Xo))Co.7- - J "I (.o))f4(r) dr

+ P, (r, G*,(Xo))g(r) divr - E ~r (~)g~~~ir i

thus establishing the result.
This verifies by a simp~le, direct method the formula of Haussmann [12] without

any requirement that the diffusion coefficient matrix gg* is nonsingular. Howvever we
do not identify p,(x) with the gradient of (he minimum cost process; this follows from
arguments as in (12].

9. Conclusion, Using the theory of stochastic flows the effect of a perturbation of
anl optimal control is explicitly calculated in both the partially observed and stochastic
open loop cases. The only difficulty is to justify the differentiation. Thle adjoinlt variable
p,(x) is explicitly identified,

TH E-1REM 9. 1. 1f f is differentiable in tile control variable it, and if tile ranawin
variable x =~x 1  has a conlditional density, q,(x) under tihe measure P', then the
inequalitY of Theorem 5.1 implies

5 u 1*~I~(s))J lsx )-s , Of )(x) 0x~.
J-j fR ll,

This is the result of Bensoussan's paper [1].
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Abstract. Using stochastic flows a minimum principle is obtained when a diffusion is
controlled using stochastic open loop controls. An equation for the adjoint process is then
derived using an explicit formula for the integrand in a certain stochastic integral.

]ally

ti I. Introduction.

There have been many proofs of minimum principles in stochastic control. For a small

l 13 , -nple see the works of Kushner (151, Bismut 121, IHaussmann (101, (11), (121, Davis and

Varaiya 161, and the book by Elliott 181. In this paper we consider a diffusion and stochastic
linear

ystcins. open loop controls, that is, controls which are adapted to the filtration of the driving

Brownian motion process. For such controls the dynamical equations have strong solutions,

174. and the results on the differentiability of the solution, due originally to Blagovescenskii and

jISI Freidlin 11, can be applied. The work of Kunita 1141 and Bismut [21 on stochastic flows

enables the variation in the expected cost, due to a perturbation of the optimal control, to

be calculated explicitly. The minimum principle follows by differentiating this quantity.

If the optimal control is Markov the stochastic integral representation result of 191 is

applied to give an expression for a quantity associated with the adjoint process. Stochastic

calculus is then used to derive the equation satisfied by the adjoint process.
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'Stats- 2. Dynamics.

during -Suppose the state of a system is described by a stochastic differential equation:

wledg f (t,et, u) dt + g(t,&)dw,

et E R, Eo = o, 0O<t <T. (2.1)
r Force

2 and *. The control parameter u will take values in a compact subset U of some Euclidean space Rk.

We shall make the following assumptions.

Al: f -. 10,T] x Rd X U __+ Rd is Borel measurable, continuous in u for each (t,z),

continuously differentiable in x and for some constant K

(1 + II)-1 if (t,x,u-)I + if. (t,x, u)I :5 Ki.

A2 : g: O, T x Rd - RdoRn is a matrix valued, IBorel measurable function, continuously

differentiable in z, and for some constant K2

Jg(t,x) I + 1g. (t,z)I 1 : K2.

The columns of g will be denoted by g(k) for k-i . *

A3 : W = (W1 ,. . .,w') is an n-dimensional Brownian motion on a probability space

(fl,F, P) with a right continuous, complete filtration (Ft ), 0 < t < T.

DEFINITION 2.1. The set of admissible controls 9 will be the Ff -predictable functions on

10, TJ x 0 with values in U. These are sometimes called 'stochastic open loop' controls, [3].

REMARKS 2.2. For each u E U there is, therefore, a strong solution of (2.1), and

we shall write (z) for the solution trajectory given by

ft ft

S(z) = x +] f (r, e.,, (z), u,)dr +]f g(r, c'.(x))dwr. (2.2)

Then, because u is a (predictable) parameter, the result of Blagovenscenskii and Freidlin

IIJ extends to this situation, sc the Jacobian -j-(x) =D', exists and is the solution of

k=I k

Du r, (x)) ,, dw (2.3
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lere I is the d x d identity matrix. In fact, if the coefficients f and g are Ck the map

X -. , (X) is . :,

Consider the matrix valued process H defined by:

I,, =I- j Ilr(f~~(r, ~, (x), r) g( (r,), (x)) 2 )dr
k=I ,

- J, , (x)dw. (2.4)

Then using the Ito rule we see d(1I',u D',) = 0 and Hu Du° = I, so H1,t = (Du' '.
4"

Write l~u (zo)ll, = sup I1q, (xo)1. Then, as in Lemma 2.1 of 1121, for any p,0<8<t

p < co, using Cronwall's and Jensen's inequalities

Iu(z0)P- < C zI + jg (r, Q,(o)) dwr0 u I 0 'Ai

almost surely for some constant C. Therefore, using Burkholder's inequality and hypoth- 4-

csis A 2 , IUu(X0)IT is in LP for all p, 1 < p < oo. Write

liDUITi= sup IJDo,I"

IIHulT = sup 1110,, I.

Then, because f and g( are bounded, an application of Gronwall's, Jensen's and Burk- ":

holder's inequalities again implies

liDU it and IltuJIfr are in LP for all p, I < p < oo. 16

COST 2.3. Suppose for simplicity that the cost associated with the process is purely

terminal and given by a bounded C2 function

A4 : We suppose lc(z)l + Ic(-)1 + Ic.. (z)1 - K3 (1 + jzj q) for some q < co.

~ - -_-
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nap The expected cost if a control u E U is used is, therefore,

J(u) = Ejc(Q2. (zo))1.

We shall suppose there is an optimal control u* E U so

2.4 J(u) <J(u) for all u EU.2.4) "N -'

NOTATION 2.4. If u" is an optimal control write " for , D' for D' etc.

REMARKS 2.5. Consider a d-dimensional semimartingale of the form

zt = z, + A

where A is a predictable bounded variation process. Then Kunita's formula [141 for the

th- composition of processes can be applied, (see also Bismut 151), and we have

i

S(zO) = Z. + f (,,u)d

+ , f , ", ('z)dA, + g(k) (r, ;,, (z,))dw'. (2.5)

k=l

DEFINITION 2.6. Consider perturbations of the optimal control u' of the following kind:

k For s E [0, T , h > 0 such that 0 < s < s + h < T, and A E F, define, for any other

admissible control ti E U,

4{ u'(t,w) if(t,w)fl s , s + h
I × A

J ~tW)= .(t, w) if (t, w) ElIs, s + hIxA.

!ly

Applying (2.5) we have, similarly to Theorem 5.1 of 141, the following result.

THEOREM 2.7. For the perturbation u of u consider the process

z,= X + j - (f(r,,(z,),u,) - f(r,C;,,(z,),u*))dr. (2.6)

-°c, X
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Then the process ;,t (zg) is indistinguishable from C't (z). 3.A

PROOF. Substituting (2.6) in (2.5) we see

(Z' (z,
x + f(r, e,, (z,),u,)dr + g(r, (z,)) w,

However, tie solution to (2.2) is unique so (, (zr) = f.,., (x). 1 There

REMARKS 2.8. Note that u(t) = u'(t) if t > s +h so zi z,+h if t > s +hI.Thr

Therefore 
Bcu

, ,) t. (Z,+h) = +h: (Q.+h (W))

ift + t >)h.J

This gi

il tile

I crto justi

T

j(u) -

Deau

~ (z) = .,L z,~ ~ (+h ())

if t> .,+"ii

A
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3. A Minimum Principle.

Now

J(u') = Ec( ,r (Zo)),

= EIc(Cr (z))) where z eo,. (xo),

dr because, by uniqueness, ;F (xo) = CT (X). Similarly, "

=.

J( u) = E lc( O' ( Xo)))
Ejc( ', (x))l.J::'"

**;

Ejc(:.r (Z,+h ))I.

Therefore,
+ h.

J(u) - J(u*) = Eic(C; (zj+h)) - c(r (z))j.

Because , () is differentiable this is h[/.-a~ z, ) a,(,.))-
= EB ((Zra)) oa U (rfr, Qr(zr),u,) -f(r, ;. (zr),,u;))dr]•

(3.1)

This gives an explicit formula for the change in the cost resulting from a 'strong' variation

in the optimal control. It involves only a time integration. The only remaining problem is

to justify the differentiation of the right hand side of (3.1).

Write r(.5,r,z,) = c(Cx(z,)) a CT(Z) (a C~r(zr))-'
Then

J(u)-J(u Ef(r(sr,zr)- r(s,r,x))(f(r, ;,r(zr), Ur)-f(r, (Zr(Z), u;))] r
- O +h

E[(r(s,r,x) -r(r,r,))(f(r,e' (z,),),;)) dr

+ E [r(r,r,z)(f(r, (;,r(ZI), u,) - f(r, V,,(zr), u;)

- (r, ,r (x), Ur) + f(r, ;,r (z), U;'))]dr

+ E [r(r, rx)(f(r, ,r(o), u,)-f(re;,,(xo), u dd

=1,(h)+12(h)+Ia(h)+14(h), say.

O
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Now, cor

A+h l+]per

11(h)j K4J~ E[lP(s,r,z,) - r(r,r,)(1 + IICU(zo)l*+h) )dr

:5 K~h' sup E[lIr(s,r, z,) - r(t, r, )1(1 + lIVU(Xo)lI!,+ h

a<r<a+h

112 h) :5Ks E[Ir(s.r..) -r(r.r.z)l(I +11 C'(xo)11.+h) I d

__. s+h sup E[jr(srz,) -r(,,,x)1(1+I11 '(xo)1l,+I]

113(h)l < K6 f [Ir(rr,x)l IIx - zlIdr

<_ K6h sup E [Ir(,r,x)l 1X - z.ll,+h].

The differences Ips, r,z,)-r(s, r,)l, r(s, r,z)-r(r,r,x)l and IIx-zll4 +A are all uniformly 73

bounded in some LP, p > 1, and

tim IJrs,r,z,) - r(s,r,x)l = 0 a.s.
r-s

tim Ir(s,r,z) - r(r,r,x)l =0 a.s.

tim 1Ix - Z.ll,+h = 0.
h--O

Therefore,

lim Irs, r,z,) - r(s,r,)lIp = 0

uim I1r(s,r,) - r(r,r,z)ll, = 0

and lim I1(!lz - zll,+A )ilp = 0 for some p.
h-.O

Consequently, lim h-' Ik(h) = 0, for k = 1,2,3. im
h-0h--

The only remaining problem concerns the differentiability of

14 (h) = E r(r,r,z)(f(r, ;,, (zo), u,) - f(r, Cs,, (zo), t;)) dr. mConst
.,,#linhit

The integrand is almost surely in L'(0,T}) so tim h-1 14 (h) exists for almost every s E .

10,T]. However, the set of times (s) where the limit may not exist might depend on the
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control u. Consequently we must restrict the perturbations u of the optimal control u, to

operturbations from a countable dense set of controls. In fact:

1) Decause the trajectories are, almost surely, continuous, F,, is countably generated

by sets (A,,}, i = 1,2,... for any rational number p E (0,T1. Consequently F is

countably generated by the sets (A.,,), r < t.

2) Let G denote the set of measurable functions from (0,F) to U C R' . (If u E O"

then u(t,w) E Gg.) Using the L'-norm, as in 171, there is a countable dense subset

ie, = {u,,} of G, for rational p E 10,T1. If 1h = U 11, then i is a countable
p51

dense subset of G. If u), E I, then, as a function constant in time, u2p can be

considered as an admissible control over any time interval it, Tj for t > p.

ormly 3) The countable family of perturbations is obtained by considering sets A, E Ft,

functions u), E Ht, where p < t, and defining as in 3.1

{ (, w) if (3, w) V [t, TJ x A,,
( ) u,,(s, w) if (s,,,,) E: It, TJ x A,,.

Then for each i,j,p

lim h- ' Er(r,r,x)(f(r, C ,, (xo), u;,) - f/(r, eo., (xo), u)) dr (3.2)

exists and equals

Ec(,,,( 0-, ), ,,,,) - ( O, U* ?A
for almost all 6 E 10, T1.

Therefore, considering this perturbation we have

lmh-' (J(u,) - J(u)) = E[r((,.5,z)(f(s, G, (o), u1,,) -f(S, e;,. (Xo), u'))IA, 1
>0 for almost alls E [0,T].

Consequently there is a set S C [0,Tj of zero Lebesgue measure such that, if a ( S, the

limit in (3.2) exists for all i,j,p, and gives

cry sE Efr(sax)(f(6, G,(xo), u,,) - f(S, , (,O), u'))'A. >0

40.on the"

7_ W- T M.
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Using the monotone class theorem, and approximating an arbitrary admissible control

u E U we can deduce that if s S

E[r(ss,x)(f (s, (zo), u) - f(s, 6,zo), u)A] > 0 for any u E U and A E F,.

(3.3)

Write
a :: (X)4. T

p.(x) = E[q( ,T(o)) ( ,T () I F. =Elr(s, s,z) I F.1 (3.4)Ox

where, as before, z = , (zo). Then p,(x) is the adjoint variable and we have in (3.3) consi,

proved the following minimum principle: highe

THEOREM 5.1. If u E L is an optimal control there is a set S C (0,TJ of zero Lebesgue TnEC

measure such that if s 0 S

p, (X)f (s, X, -) < P, (X)f (s,X, U) a.s.

That is, the optimal control u' almost surely minimizes the Hamiltonian and the adjoint

variable is p, (z).

REMARKS 3.2. Under certain conditions the minimum cost attainable under the
Ik 1css of

stochastic open loop controls is equal to the minimum cost attainable under the Markov,

feedback controls of the form u(s, Q,, (zo)). See for example 12), 110]. If uM is a Markov

control, with a corresponding, possibly weak, solution trajectory ', then uA( can be

considered as a stochastic open loop contro! uM(w) by putting so, diff(

u " (tv) = U (s, a," (Zo, W)).

where I

This means the control in effect 'follows' its original trajectory 6'4 than any new trajectory. Fr

That is the control is similar to the adjoint strategies considered by Krylov 1131. The

significance of this is that when we consider variations in the state trajectory C, and

derivatives of the map z - f,,g (x), the control does not react, and so we do not introduce so from

derivatives in the u variable.

.4
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)I If the optimal control u* is Markov the process e' is Markov and

p (x) = E(I7(s,.s,x) I F4

=Ejr(s, s, x) I zj. (3.5)

* 4. The Adjoint Process.

I) ~ Suppose the optimal control u * is Markov. As notcd above, u * can and will be

cosdee as an open loop control. The Jacobian 8e; T exists, as does -9;T and

10 THEOREM 4. 1. Suppose the optimal control u* is Markov. Then

p, (x) =E[c ( (xo)) Do,TI- p, p(eo*,?(xo)) f4(r, o,, (zo), u;)dr

+ f p,,(r, ,.(--o)) g(r,$~ (xo)) dw,

- j p.(r,E~ (xo))g(r,r (xo))g&(, ;,,(xo))dr.

lie neso outost 21 PROOF. Write f( (r) for f( (r, , (xo), u') and g(r) for g(r, Es.(xo)), etc. By unique-

ov OT (X0) = ;,T( ~(Xo)) (4.1)

be

so, differentiating,

SDO,T =D 1,T DO,, (4.2)

where or = DT etc. (without the )

ry. From (3.4) and (3.5)

'he

nd p,(x) =Efce( j.(xo))D.,r Fj

ice so from (4.2)

p, (z) Do., Ejc ,T (-Z0)) DO,T Fj (4.3)

4

W_74
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and this is a (P, {F}) martingale. Write x = e ,, (Xe), D = Do,,. From the martingale

representation result 191, the integrand in the representation of p,(z)D as a stochastic x SI
integral is obtained by the Ito rule, noting that only the stochastic integral terms will

appear. These involve the derivativ s in z and D. Therefore [2)

p.(z)D = E~c (o,T (zo))Do,T I + p.(r,,(xo))g(r)dw, Do,, 131

+ P W, (o))g(k) (r)Do. dw,. (4.4) " 141
k=i

Recall from (2.4) that to,, = D - 1 so forming the product of (2.4) and (4.4), using the Ito 151

rule: 16]

p, (z) = (p. (x)D)lo,. 17!

= c (-,T (xo))Do,T- p, (zo))f4(r)dr 181

f p,(,, (-o))gk ) (,-)d rk + fpr(Co-,, (,o)) (g ())" l
k= 0 k=1 191

+ p1 (r, ;,, (zo))g(r)dwr + p,.( , (xo))g) (r)dwk  11o!
k=1

p(r x)g(g( rdPrW (xo)) ((k) (r))id
k= k=1 0

EIqc(,T (zo))Dor - P P(oT (zo))f4(r)dr 112J

+ fp-(, ;,, (xo))g(r)dw, - p.(r, ',r (xo))g(r)g) > (r)dr
k=I f

!141
so establishing the result.

This verifies by a simple, direct method the formula of Haussman 10].

11 )

LL :15J

Irfr M
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Solutions of Kolmogorov's forward and backward equations arc obtained by
considering a family of conditional expectations and the use of stochastic flows to
justify 'differentiation in the time variablc. L- 1989 Academic press, Inc.

INTRODUCTION

Probabilistic solutions of the Cauchy problem for Kolmogorov's forward
and backward equations have been known for many years. In [5, 6]
Kunita uses stochastic flows associated with forward and backward
stochastic differential equations to write down explicit forms of the solu-
tions. In fact hie uses both forms simultaneously, in that he requires the
backward equation for the forward process to solve the Kolmogorov back-
ward equation, and the forward equation for the backward process to solve
the Kolmogorov forward equation. In this note we indicate how solutions
of the Kolmogorov equations can be obtained directly by differentiation in
the time variable of a family of conditional expectations. This is justified by
differentiating inside the conditional expectation, using the properties of
stochastic flows. Both the forward and backward Kolmogorov equations
are considered. As noted in £3], the conditional expectation is a solution
of Kolmogorov's equation because the bounded variation term in its semi-
martingale representation, using the Ito formula, is zero.
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DIRECT SOLUTIONS OF KOLMOGOROV'S EQUATIONS 27

I. STOCHASTIC FLOWS

Let w,=(w ... , w,") be ni-dimensional standard Brownian motion
defined for all t 0 on a fixed probability space (Q, F, P). Write (F1), o for
the right-continuous complete filtration generated by w.

Suppose that we are given vector fields X., X1 ..., X,,, on [0, oo) x R"

such that each X, is three times continuously differentiable with all
derivatives bounded. We can associate a stochastic flow with it, and the Y,:

THEOREM 1.1 [2]. There is a map : [0, oo)x [0, oo)x R"x )'R
such that

(i) for 0 < s < t and x e R', 4,,(x) is the essentially unique solution of
the stochastic differential equation

dL.,(x) = Xo(t, ,(x)) dt + X,(t, ,,x)) dw', (1.1)

with ,..(x)= x (we employ the Einstein sumnnation convention when con-
venient);

(ii) for each s and t and ahnost all w, the map ,.. ) has a version
which is twice differentiable in x and continuous in s and t. The Jacobian

= O ,,/x is then a solution of the linearized equation

O~o ax.
dD.,= (t, ,.Jx))Ds.,dt+ (t,,.,(x)) D, ,dwt (1.2)

(iii) the second derivative a' ,/ax" is well-defined for each x, s, t.

Remark. The conditions we have imposed on the coefficients of (1.1)
suffice to ensure that ,, and D, belong to LP(Q) for all p>0. The
arguments to establish appropriate estimates are standard applications of
the Burkholder, Jensen, and Gronwall inequalities, similar to those in
[1, 4]. The conditions on the-coefficients can be relaxed somewhat: those
employed here are fixed in the interests of simplicity.

Now restrict attention for the remainder of this paper to the time
interval [0, T], where T is a fixed finite positive number. Censider the
trajectories with a fixed initial position xocRd" and assume that we are
given a function c(4o.r(xo)) of the final position at t = T. Assume further
that c is three times continuously differentiable with bounded derivatives.

Define the (F,)-martingale M = (M,)o-1, T T by setting

M, = E[c(o T(X0)) I F].

It is shown in [3] that the uniqueness of the martingale representation

:2 z'



28 ELLIOT AND KOPP

Af,=Mo+f y,(s) dW, where the integrands y,(s) are predictable pro-
cesses, can be exploited to find an explicit expression for yi(s) and to solve
the Cauchy problem: in fact, if we set x = o.,(xo) and write (as in Section 2
below) M, = E,., [c( (x))] = V(t, x), then it is shown that V is a solution
of the backward parabolic differential equation a V/8t + L V=O, with final
condition V(T, u)= C(XT), where L is the operator

L=Z -+ ( (XX (j ))

In [3] the Ito differention rule is applied to V(t,)x) to yield these results.
This requires the differentiability of V in t, which can be proved using
Kunita's results [6] on the reverse time stochastic differential equation for
the reverse flow . Our purpose in this note is to show that this can
be avoided by a direct calculation of 8V/8t. This approach has the advan-
tage that only the semigroup properties of the flow , the Markov
property, and the independence of Brownian increments are required for
the proof.

2. DIFFERENTIABILITY

Because wo = 0 for standard mi-dimensional Brownian motion we observe
that

Ft={wts: O< s <t}

= F? ={w,- i,: Or<s< t}.

More generally we shall write F,'= {w,- w,: u s< t}. Therefore, if the
initial condition x0 of the trajectory is known, by the Markov property and
independence of future increments

E[c( o. T(Xo)) F,] = E[c(%o. T(Xo))f F,]

= E[c(G T(xO))Ix1

= E,.. [C(o.(xo))]

= V(t, x), where x =o.,Xo).

Now by the uniqueness of solutions of (1.1), and the semigroup
property,

-, ( ) c G ( O())= o T o .T ,t
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Therefore,

V(t, x) =lo Et[C( ,T(X))]

=E((, (-r)) I F,J (2.1)

Write

D axdc, O2

Differentiating (2. 1) in x we see

0V(t, x) = V~(t, x) = Erc (4,.T(X)) D,.t F,]

a2 I/
a,2 (t, x) = VAx) =E[c~j,.T(x)) DI.T® DI.T]

+ EC ( ,.T(X))

because the map x --) ,T(x) is C2.
We now wish to investigate the differentiability of 11(t, x) in the i

variable. Under strong enough conditions on the coefficients X0, A'1 this
would follow as in (6] by considering the reverse time stochastic differen-
tial equation for the r%;verse flow ~~'.However, we will give a direct
proof.

THrOREM\ 2.!1. For any, x e Rd, V(,,, x) is continuously differ'entiable inl
and

- (t, x)= Xo(t, x) E C4":. 1(X)) ax'J

+ ~ X,"(1. x) x) E[04_ a1(C( ,T(X))]

L LV(z, x), w'here ak alx.

Proof. For a given x e R consider

1L

UN~
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Using the mean value theorem, for hi >0,

=C( , 7{( , -...I (X))) -( A)

+ C /,C(,(X)q(.,() -X)(7,,x

2 k.-

where P1i - xj .1 1() xNl and x =(x' ,.x"), where x e R".
Now

X + f .X0(r, ,.h,(X)) dr

+ f A I (-h ,..,,X)) div',

So ( '-..h,(X) - X) is P, - measurable. For the given X, ,.T(X) and b ,,T/ 3 x
are Fr measurable, so because the increments of Brownian motion are
independent

E ( ITXO) 7(t,(- E)

= E[C17(tTX)) ~4ti] X.'(, ;i.r(X)) dirl
0 (hz). (2.2)

Write

Z a alC(~T( ))(q(4~,,,x) .~)(~)Jh,,(X) X
k.1- I

= ak a(C( 1 ()))(l)V'hX I"hX

d

+ 7-Z ~&a1(~( .T)))(X)(Wj..,,(X) - X')
k.1- I

XW ( h7,,(X) -X = S1 + S2 , say.
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Because the second derivatives of c are bounded, and because and D

belong to L"(0) for all p,

E[S1] K, (E [ ( co,(1) (c- t.T)(X))]

(E[ h,,,(xV) -

SK,, (E [('2 (cc ,-~(i - - (C - '. )(X))) i

because, as hi- 0, (a2 /a.V2)(C.~'*(i (a2/axV2)(e ,.7)(X), converges to
zero a.s. and is bounded. Again, because F,-' and F' are independent

E[S, ] = E E[Oka,(c ,,T)(x)] E[( 1 1(v)x I- ~,,x-x"

A.I= I

t ~ I

0 (h). (2.4)

From (2.2), (2.3), and (2.4) dividing by h >O0 we have

li ni I( (V(t - h,, x) - 11(t, x))

d ,

2k.1I I j-1

This establishes the existence of the left-hand derivative of V at t. Thle
existence of the right-hand derivative is proved by considering

IP'(V(t,x)- VQt+,x))

hz (E[c( ,+ . ())] - ~)) ~( ,TX)

Using the mean value theorem the limit as hi--* 0 is established as before,
Introducing terms similar to S,.

Y -w =~=

- -="- ~M
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Therefore, -(a V/Ot)(t, x) exists and equals-L V(t, x).

COROLLARY 2.2. Recalling thec operator

T ki-lI j- I aXkXI-C

we see that V(t, x) = E[c( O.T(xo)) I F,] is thec solution of thec backwtard
Kolmogorov equation

OVLV=O
at

wit/h terminal condition

V(T, XT)= E[c(4~T(X0))IF7']

= c(X7').

Remark 2.3. The situation when the coefficients X'1 are not bounded can
be treated by using stopping times. Equations of the form

ev+.L; + v=O,

wvhere 0 is a smooth, bounded function, can be treated by introducing a
new coordinate d 1 where

d '(X, y)= exp { St ~() r

This is the Feynman-Kac form of the solution; see Kunita [5].

3. THE FORWARD EQUATION

i We again work on the time interval [0, T]. Recall the a-field

Pr = a (w 5 - w,: t -- r <s <_T),

?~and denote by IF'} 0 <t,<T, the left-continuous complete filtration

T~- ,~~-7

IA
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generated by the F.. Suppose f(r) is a continuous {F'-}-adapted process,
that is, f(r) is F.. measurable. Then the Ito backward integral

f(r) l,,

is defined as the limit in probability of sums
'I IS' f(zk+)(w, .Z- w
k-0

where i = to< . t,, = T, and the limit is taken as JA=
max tk+-tk! goes to zero. Kunita [5,6] then defines the backward
stochastic differential equation

= -Xo(x, c is s- X5(s, dwi,'

For each te [0, T] and x e R" this has a solution ,.T(x) with terminal
condition :T,7(x)=x. We shall suppose the coefficient vector fields X,
i = 0, ..., n, satisfy the boundedness and smoothness conditions of Section 2.
In fact e,(X) is given by

7"I,.A~X)=X+f, Xo(1 ,.7.(X)),- ,+ It, ,(".,rT(X')) 1"r" (3.1)

Clearly ,,T(x) is a backward {F} semimartingale, with the time
parameter t running from T to 0. The situation is the mirror image to that
discussed in Sections 2 and 3, so there exists a map

q: [0, T] x [0. T] x R'x 2 -+ R ,

such that for t < r < T and x e R, .(X) is the essentially unique solution
of (3.1). Furthermore, is twice differentiable in x; we shall write

D. for

For a given terminal condition XT consider the backward solution o.(XT)
and the quantity C(qo.T(Xr)), where c is a bounded, C3 function on Rd, with
bounded derivatives. We now consider the backward martingale

r- = E[c('o 7(xT)) FT

,, , -
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By the Markov property this is equal to

E1C(&.T(Xr)) IX], where X = ',T(XT)

=E Ec( O,(x)) Ix]

= V(t, X), say.

Because of the symmetrical nature of both the Markov property and the
independence of Brownian increments, the analog of the argument in
Section 2 for the forward flow applies to P'(t, x) and shows that

T (t, x) =L PQ, x).

tNote that because time-is now considered in a negative direction we
consider e( 0.,,h(X)) -c( o.,(x)) and so we obtain a~Ia/t, rather than the
-a Vlat of Theorem 2. 1.)

The initial condition for Vl is V (O, ~T(xYT)) = c(4:o(XT)),ie.

This discussion avoids the "forward equation" for the "backward
process," as used by Kunita [5].
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An integration by parts formula for functions of jump process is established which follows from an
ordinary integration by parts in the state space of the jump measure. The analog of the Malliavin
matrix is defined: if-the-inverse of this matrix belongs to all L'(O),p _ I, the jump process has a smooth
density.

KEY WORDS: Malliavin calculus, jump processes, integration by parts, stochastic flows.

0. INTRODUCTION

The Malliavin calculus is a calculus of variations in function space. One of its
principal applications is to establish the existence and smoothness of densities of
processes defined by stochastic differential equations. Following the original work
by Malliavin (10], Bismut [4], Stroock [14], and others, on continuous stochastic
differential equations driven by Brownian motion, there have been papers on the
Malliavin calculus for equations driven by jump processes. See, for example, the
work of Bismut [5], Bichteler and Jacod [2], Bichteler, Gravereaux and Jacod [3].
Leandre [9], Bass and Cranston [1] and the recent paper by Norris [13]. A
central result in these papers is an integration-by-parts formula in function space
which is often established by considering a perturbation of the original process
and a Girsanov change of measure. However, we show below how an integration-
by-parts formula can simply be obtained from classical integration by parts in the
state space of the jump measure. An analogous integration-by-parts formula for
continuous diffusions is established in [6]; however, the jump processes discussed
in this paper require significantly different definitions and techniques. A Malliavin
matrix M is introduced and if M -t belongs to all the spaces LP, p>I, then the

*Partially supported-by the Natural Sciences and Engineering Research Council of Canada under
grant A-7964 and the Air Force Office of Scientific Reseach, United States Air Force. under grant
AFOSR-86.0332.

tResearch partially supported by the Natural Sciences and Engineering Research Council of Canada
under grant A-7964,
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N4 R. J. ELLIoir AND M. KOHLMANN

jump process has a smooth density. Of course the crucial problem then concerns
the integrability of I -': this is investigated in [3] and [5] by imposing growth
conditions on the coefficients and using delicate Tauberian theorems. However, we
do not discuss such problems in this paper.

I. ASSUMPTIONS AND DYNAMICS

Consider a probability space (f),F,P). Suppose u = p(co, dtxdz) is a Poisson
random measure on [0,fl]xZ and let {F,},O= tT be the right continuous
complete filtration generated by Ii. Here Z can be an open unbounded subject of
Rm: in Fact for simplicity we shall assume Z=R'. G(d:)=dz will denote Lebesgue
measure on Z. We shall suppose the compensator v=v(dt x dz) ofr is of the form
dIt x G(d-)=dt x d, so that the compensated measure j of p is:
fi(dt x d:) = (di x d:) - dt x dz.

D)ynamnics I,

Consider a jump process o,,(x0) e R, for Ot:5 T, given by

.(Xo) =X0 + J f g(1., - (xo), :)f(dr x dz)
0oz

I i
+ i h( o.,-lxo),z)v(dr x d:)+ A(bOr(xo))dr. (I.1)
0 1 0

Here

g =(g'), I <i d, maps R dx Z---Rd

hz=(h'), 1 <i-<d, maps R" x Z -. Rd

A =(A'), 1 <i:d, maps R -Rd.

We shall assume g, h, and A are C ' and have bounded derivatives in x and z of
all orders. Furthermore, we suppose

.... a I .. I _ ,- , ,I ,.

x j I r41

and

sup DPDgh(x, e) e L'(Z) n L2(Z) n L ,(Z)



INTEGRATION BY PARTS FOR JUMP PROCESSES 85

for p> I. and that

infdct ji +g,(x. )I >0. (1.2)

Then from the results of Meyer [II] and LUandre [8] there exists a map

0: 0 x [0, T] x R - R'

such that

i) for each xe R' 0((o,t,x) is the unique solution of(l.1).
ii) for each w and t the map 0(wt,,-) is C' on R1, with derivatives of all orders

which satisfy the stochastic equations obtained from (1.1) by formal
differentiation.

Consequently, for example,

Do,= o

satisfies

dD, = -Do.. dI + Do.,- dv+-,Do .- dt (1.3)

with D0.0 = I. the d x d identity matrix.
The following result is similar to that of LUandre [8].

L-M.MA 1.2 Suppose V is the matrix solution of the stochastic equation

Vo,=-J f V .,- J V,. .,avo,-o z " e 0 z "o

if Vo., -O a, II4

Then Vo.,=Do.I for 0_<t <T

Proof An application of the product rule shows that d( Vo. , Do.,)=0, so because
V0 0D0, 0=l the result follows.

Remarks 1.3 First note that if D,... IV,., are solutions of (1.3) and (1.4) with
D),.,=I= V.,, then by applying Jensen's. Burkholder's and Gronwall's inequalities
we can see that

sup ID. and sup V.l arc in L2) for all p< c.
II gu I
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The Poisson random measure p is a special case of an integer valued random
measure. Therefore, as in (3.18) of Jacod (7], there is a set

=[(w. O(,,t} xZ)= }¢cfnx0,7]

and for each ((o. t) ED a unique point #,((o) e Z such that p(w, {t} x dz) is the Dirac
measure at ij (v). Therefore,

pt((o, dt xdz)= V 6lso (txd)

Consider the solution flow 0(wv,t,xo)= o.(xo) of (1.1). If U, and so , has a
jump at time t, the magnitude of the jump of is g( o.,-(xo),z), where z=fl(w).
Write x= o,-xo). Then by the uniqueness of the solution of (1.1) we have the
following flow and semigroup properties:

o. ( XO) = . x) = ,. ( o.,xo))

= .Ax +g(x, Z)ID).

Considering the Jacobians, therefore, by differentiating and using the chain rule we
see So,(xo) = s°"'(x°) +g( 0 .,-(X o ), Z)l, so

Do0., =(I +g .( 0.,-(X0) Z) I )Do0.,-

and

Do- = Do.-(I -(I + g(,o.-(Xo)z))- g(o,-(xo), z)I (1.5)

Also. with D-T=(,/,.

DO.T=D,-.TDOt-

= D, T(I +gIo)Do., -

so

D,r Do D., (1 +g 1 D) -

~~= D0 ool-(I -(1 +g) 'g~Io).

7 This identity indicates why condition (1.2) is necessary. Similarly, writing

= O0 1(x0 )

so oxo)= '.Ay)
-- so
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D0.= D'.TDo.,

and

D. 7= DO. rDo. (1.6)

If we consider the Eq. (1.1) for o,(xo) and the equation (1.3) for its Jacobian
Vo, as a single system, the coefficients are not bounded. Following Norris [12] we
introduce a class of "lower triangular" coefficients. See also Stroock, [15].
DI'INITION 1.4 For positive integers , d, ..... d, with d=d, +'.+d, write
S,(d.... d,) for the set of X e C(Rd x Z, R d) of the form

X(x,Z)= 1X'x' 2 Z)  for x=

\X (k)X , X"...... ,X k) (X

e R'. where Rd is identified with R d, X" x Rd,, xJeRd, and the X satisfy

so s u, sup v sup fDjX t"(xz)IGL'(Z)crL (Z)

for all positive integers N.
Write S(d ...... d) = U. S,(d. d,).
For coefficients not involving z a similar space S(d ......d) can be defined as

in [6].

Remarks 1.5 Note (1.1) and (1.3) can be considered as a siisgle system with the
coefficients which involve z belonging to S(d.d 2) and the coefficients A,
(i'A/i)D,which are independent of z. belonging to S(d,d-). The proof of Norris
can then be adapted to prove the following result:

TilotR.,I 1.6 Suppose g. h, S2(d ...... d), A e S,(d ..... d) and inf, det II +g.,l > 0.

'rhen there is a map 0:) Q [0, T] x (0, T] x Rd-R d such that

i) for 0<_s:t<_T and xeRd 0b(w,s,t'x) is the essentially unique solution of the
equation

dx, =g dfi + h dr+ A dt (1.7)

with x'=X.
ii) for each o.s,t the map q(,o~s,t.) is C' in x with derivatives of all orders

satisfying equations derived from (1.7) by formal differentiation.
iii) sup. _ R E[sup,, _,ID'b(o,s. ux)jP]

< C(p .s. t. R. n. N,. d. .. , i. Ic , hIhlIs2. .,.. IIAI1S, ..,v,).

where D" denotes any mixed partial operator in e l 
7
/Xd of order less

than I.

- --
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Proof This is a- technical result whose proof, using smooth truncations of the
coefficients, following that of Norris [12]. It is of interest to note that condition
(1.2)

infdetll+gl>0

for the system (1.7) implies the corresponding condition for the enlarged system:

dx, =g dfi + Ih dv + A dt
g ah aA

,o.,= Oo., ,d d + o., dv + Do., d. (!.8)

The function corresponding to g, that is the coefficient of/f, in (1.8) is

g= (OD)

and the state space now consists of the variables x and Do., Recall ag/al is
another notation for g, the gradient of g, so

Forming the Jacobian of q with respect to x and D we obtain an operator we can
formally denote by

(:DOD 0)
and, working in coordinates, we see det 1+glj=(det I+gj13). Therefore,

-inf 1 (deti! +,g > 0.

2. INTEGRATION BY PARTS

- In this section we shall establish an integration by parts formula.

AssetIPrioms 2.1 Suppose g, h. A S(d.. . d),
lima Dg=C for q;l. (2.1)

I:1- t

v,, R' . and that conditions (1.2) are satisfied. Consider the unique solution o.,(xo)

o.,(-o}= X0 + f g(., x,), z) III (dr x d:)

+ J J h (x,).z)v(dr x dz) + J A ({o,-(xo)) dr (2.2)
0 o z o 0:

for 0<t < T

=- _ .. .
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Suppose F: [0, T] x R d-.R is a bounded C' [unction. Then the differentiation
rule gives

OF
F(t. '(,,(x,)) = F(O. .\c) +f (r 0 X))r

+JJ (r, ,0.r -(x 0 ))g( :0, (x0), Z) S/ij

OF
+ f~ J (r. , - ))( 0 ,(xo), z) dv

0o?

'OF

+ f f (F(r. ~*,(x 0) +g( O0 -(xo), z)) -F(r, ~o(xo)
0 z

(r (x)9 . x) )d

(OF OF I F-F(0.x 0)-J + --- A I r + J J hdv
o Or 0z

+ J J(F(r. o0 ,-(Xo)+gR 0'o,(Xo), z)) -F(r- ,-O.r -(x0)) S/I
0z

0 z

OF
- (r ., 0 -(xo))9( ., -(x0), :) dv. (2.3)

Consider a bounded C' function c:R d-R with a bounded derivative c..
fhe random variable c(z0 .7(x0)) is FT measurable and ' z 7 we can

consider the martingale

M,= E[c(;'0 A~xo)) I Fj]

Writing x S-o.(x 0 ), because ti~ process is a M'arkov, we have

I.A I *O 7-O
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= E[c( ,. Ax))]

= V(t, x), say.

By differentiating with respect to x inside the expectation we see

= E[c,(o. Axo))Do. I F,]DO., (2.4)

using (1.6).

LEM,,IA 2.2 V(t.x) is dijferentiable in t.

Proof Consider the function O(x)=c( ,.7x)). Using (2.3):

-~h,( (x)= A -~dr+ I 4/:dv
i-h " i-hz LX

+ J fjtk, ,,iX) +g -., ):)) -4, -.- )d

-~hi

+J

i-hz

Taking the expected value, dividing by h and letting h-*O we see

eV cV hV- -t=A. -!+h~-dz

Because the martingale V(t,x)= E(c(, 0 .A(xo)) IF,] = E(c( ,,r(x))] is differentiable
in t and x we have the following martingale representation result.

PROPOSI ION 2.3 Write y = o.(xo). With V(t, y) = E[c(-,. (Y))] = E [C( 0 1(Xo)) Fj
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V(1- 01(X0 )) = V(O, x0)

0 z

Proof We have seen above that V is differentiable in (and v. Therefore, writing
down thie differentiation rule (2.3) for V

I/([. I( V(O' x0) + 1(~+A 'Vdr + f f/"A d

+ ff(V(r. %, -(xo) + g( O. -(x0 ), ))-V(r , ', ix))) df

+ 5( V(r. 0 .r-(XO) +g( O.,-(XO), M)
0 z

- V(r - 0. r -(XO)) -g( ., - (XO),). (r -. 0. -(x0 )) dr

=V(O. X0) +) + L V) dr

+ Mf(Vr, ~~rX)+(o.x)z)) - V(r-, ,-(x)) dfi. (2.5)

0 z

However, from Lemma 2.2 Vr + LV =0 and so

V(t, v) = V(O. x0) + f f (V(r. 0 , - (x) -+g(cO., .(xo), ))-V(r. 0,.(x0 )) dfi.
0 z

The integral with respect to the compensated measure fi is. of course, a martingale.

COROLLARY 2.5 Notw. in particular, the representation

1*

c(t;,0 74x 0)) =E[c(' 0 .T(xo))1 + I5I ( V(r, 0 .,-(x0 ) +g( 0 , -( 'o). z)
0 z

V7 - '. xo)di
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NoTATION 2.6 Suppose 4,..t)= .(t,:)is a square integrable, predictable, pos-
sibly vector-valued, process such that both .(t, :) and

I(. Z) ..... ; belong to L'(Z x [0, T] x Q)

and lim 2(.t,:)=0, for almost all w. (2.6)
1:1- X,

Consider the vector valued martingale

L,= I (r, :) ,i
01

For I <_k!m

iz .(.= l I...... dz ...... dz, dr0

for almost all w by (2.6).
Therefore, L,=I o J,,r, :)du for almost all to.

TiICOREM 2.7 Suppose o.,(X) is the solution of Eq. (2.2) and L, is defined by (2.7).
Write x = -., (xo). Then

E[c(0o. i(xo))Lr]

=- E o, D(Xo))Do, J " Do -(I +g(x. :)) "'g:(x, z);.(r. :)Ii(dz, dr)

where

Proof Wiih V given as in Proposition 2.3 and L given by (2.7) the product rule
implies that

T T
VrLT=f v,_ dL+ L, dV

0 0

r
:- +f f ( V(r, x+g(x, )) - V(r- x))/(r, )dai.

0z
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TFaking expectations we have

and the final expectation is zero by (2.6). Furthermore, because I(r,:)=
wec can integrate the terms by parts in Z mrespectively,

and obtain:

E f( V(r~x+g(x.:))I(r.)d:)dr]

= EI f f (rx + g(x,:))(rz d:dr.

=-E[J ff (r~x+g(x.:))4.r,z)dij=- f -(,,g(,-;(,)~

where Y=(fO0,(XO). (29)

Here we have again used (2.6), and aVlaz=(a/ 1 ..... 0 , ). Recall

V(t. y) =E~c( . A~xj)I F,] = Ec ~)]

and from (2.4)

-=E[( 0 AjxO))D0 .T F,]D 0.

so

E[J( V(r x + g(x, z))(r :) d:~

- [f E E[cg(o. T(X0 ) Do. T Fj]DO.'g:(x. A)(r,) dy]

Writing

X, E[c4( O, j(x0 )) DO. T FQ

and
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, J og g(x , .))(s,z) di'
0z

we have

T T

XrYr=J X,dY,+J .dX,
0 0

so

Substituting in (2.9),

E[c(,o. T(.)) L r]

r
=-E C( oXo)O f Do ,g(x.z)+.(r, )jI(dz, dr)

=o- E .r(Xo))Do, rJ J Do -( +g~x, :))-'g:(x.z)A(r. z)p(dz, dr).
0z

NOTATION 2.8 Write

= D-, I ( +g.) - 'g:(x. :)g*(x, z)(I +g,)* - 'D*.-'t(dz, dr)
Z

where, as above, X=o.,-(Xo) and * denotes the transpose. Then M is the
Malliavin matrix for the process.
COROLLARY 2.9 In Theorem 2.7 take 2(t,z) to be the process

g!,(I+ gJ,),- 'D*,-2.

Note that from (2.1) this . satisfies condition (2.6). Then with I(t,z)=(?a/1z)(t.z)
and L,= fT f, (t.z)dA

E[c(o. (xo)) L] = E[c 0(o. T(xo))Do. Mo. T]. (2.10)

R,,wrL. 20 Eqw,,;,n2) 0 k . d s a" "10 ....... k s......"

formula for c(,o, r(Xo)).

In Theorem 2.7 we could consider an I which is just the derivative of ; in a
single direction, say I(t,:)= A.i~z1 . Then with L,=f'ofzl(t,z)dfi for this component
the above calculations go through, and we obtain (2.9) with MO.T replaced by

f ..(t +g,) g:,g:,(l +gf) .. ,
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Here g.,=ag/ ,z1 . An integration-by-parts formula (2.10) is obtained which
involves the derivative of g in just a single direction. However, to preserve
symmetry, we prefer formula (2.10) in the form which includes the gradient g.

3. HIGHER DIMENSIONAL FLOWS AND BOUNDS FOR DERIVATIVES

Consider a product function

f( o. Txo)) = c( o. 7(xo))k( o. r(xo))

satisfying the conditions of Theorem 2.7 and apply Corollary 2.9. Then

E[f( o, AXo))Lr] = - E[(c, (o "r(xo))k(o r(xo) + c(€0 .(xo))k,(o, T(Xo))Do TMo. rl.

What we would like to do in (3.1) is take k=M- 'DJ! 1 so we can obtain a bound
for q. However. DoA and Mo.r involve the past of the processes , D and M. This
difficulty can be overcome, as in '6], by considcring augmented flows q5"',
n= 1,2,..., defined inductively in higher dimensional spaces. Therefore 1.6 applies
to all . n_>_ 1, so that analogs of Theorem 2.7 and Corollary 2.9 may be used
with 0"" instead of q5 ard k(okt1')= A1DMoJ.r to prove the following result:

TIiORE NI 3.1 Suppose o. (xo) is the solution of (2.1) and c is any smooth fiunction
with bounded derivatives. If MJ !- is in some LP(f2)

IE[cQSo.A xo))]1 K sup Ic(x)l.
XC Rd

Remarks 3.2 As is well known (see Malliavin [10], or Stroock [13]) the
inequality (3.4) implies the random variable 0.A(xo) has a density.

To show the density of o.r(Xo) is differentiable we must obtain bounds of the
form

IE [ ( O, (x0)) 1 :5 K sup Ic(x)I (3.1)

where =(i'.2. ) is a multi-index of non-negative integers and

2 d

An argument from Fourier analysis (see [12]) shows that if (3.1) is true for all 0
with l= =q +' +,<n where n d+ I then the random variable go.r(xo) has a
density d(x)=d(x, ...... xd) which is in C"-- '(Rd).
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If we proceed as above with O'n' replacing 04" and consider successively higher
derivatives of c in the above mentioned analog of Corollary 2.9. we can derive the
following result:

Tiit:oRi:,a 3.3 Suppose the inverse of the Malliavin matrix, MJ -. T, is in every L"(0~),
I p :c. Then the random variable k OAx 0) has a density d(x) which belongs to
C(R Rd).

Remzarks 3.4 The above has been studied in detail in [6] for the continuous
case. and the methods carry over to the situation here. The main question,
however, concerns the existence and integrability properties of M-'T. Now
Ml tGLP(A) if and only if det Al iGLP(f), and for the symmetric matrix Ml we
have the following inequality, (see [3]):

(det ivo - F=(pV - s Ixi 1 2P ')(exp( x* Mx) dx.
Rd

To show the integral on the right is finite delicate Tauberian theorems are applied
in [5] and [3]. The conditions for these to be satisfied are established by assuming
g satisfies certain growth conditions. The objective of this paper is to give the
simple proof of the integration-by-parts formula (2.10), which does not involve the
calculus of variations in function space. and indicate how this simplifies arguments
concerning the existence of densities.
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Abstract. Using stochastic flows and the It6 differentiation rule, the inte-
grand in the representation of a martingale as a stochastic integral is identified.
By iterating this representation result a homogeneous chaos type expansion
is obtained. Using the stochastic integral representation, an integration by
parts formula is obtained without using any calculus of variations in functj2n
space. If the inverse of the Malliavin matrix belongs to all spaces L"(fD) it
follows that a random variable has a smooth density.

1. Introduction

The Malliavin calculus was originally developed in a remarkable paper, [7], as
a calculus of variations in function space; one of its applications is to show that
under appropriate conditions diffusion processes have densities. Bismut, in [3],
approached the Malliavin calculus by using stochastic flows to describe perturba-
tions of trajectories while Stroock in, for example, [9] used more functional
analytic methods. Simplifications of the Malliavin theory were provided in the
papers by Bichteler and Fonken [2] and Norris [8], and in the recent book by

"- Bell [1]. A very readable exposition can be found in the paper by Zakai (10],
and a careful treatment is in the text by Ikeda and Watanabe [5]. In all these
presentations function space calculus is used. A contribution of this paper is that,
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for Markov diffusions, some of the initial results of the Malliavin theory, including
the "integration by parts" formula, are obtained by techniques which involve
differentiation with respect to initial conditions.

The paper begins by using the theory of stochastic flows to identify the
integrand in a stochastic integral. After some rearrangement this integrand is ;P
itself written in terms of a martingale which can be expressed as a stochastic
integral, and by recursively repeating the representation a homogeneous chaos
expansion is obtained. Using the stochastic integral representation, an integration
by parts formula is then derived. If the inverse of the Mailiavin matrix M belongs
to all the spaces LP(fl) we show that a random variable has a smooth density;
however, the difficult questions concerning the relationship between Hirmander's
conditions on the coefficient vector fields and the integrability of M - ' are not
discussed in this paper. This paper was presented at the Workshop on Diffusion
Approximations held at the International Institute for Applied Systems Analysis,
Laxenburg, Austria, in July 1987. A fuller treatment of the ideas given here can
be found in [4].

2. Dynamics

Consider a stochastic differential system
&Y, = Xo( t, x,) dt + X ( t, x,) dw,. (2.1)

Here xE Rd, 0: t-5 T, and w = (w',..., w") is an m-dimensional Brownian
motion on (0, F, P). We shall assume that the coefficient vector fields X are
smooth and have bounded derivatives of all orders.

From results in [5], for example, it is known that for 0:5 s - t -- T and x, E Rd

there is a unique solution . of (2.1) with f,.,(x,) = x,. Furthermore, there is
a version of this solution which, almost surely, is smooth in x, E R".

If xoe R' and x = eo,,(xo), because the solutions of (2.1) are unique,

eoT(XO) 
= 

,.T(o.,(XO)) = 
f,r(x). (2.2)

Write D,,, = O&,/x for the Jacobian of the map x -* :,1,(x). Then, differentiating
(2.2),

D0.T = ,

Again, from [5] we know that D satisfies the equation

dD,, -X- D.,d, +-XD dwl (2.3)

with D,, I, the d x d identity matrix.
Consider the matrix function V., defined by the, stochastic differential

equation

ddt - V,4 dw(
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with V,~ L Here

1 OX",
90 O ~~X 0

Then, see [2], d(V, D,.,) 0 so

3. Martingale Representation

Suppose xoe R'" is given. Consider a smooth, bounded function c on R d and
the random variable C(eO.T(XO)). Write {F,} for the right continuous, complete
filtration generated by F, = o{f w,: s--< t). Because xo is known crfx,: ss It}c: F,
and the process (x,, w,) is Markov. Consider the martingale

M,= E[CMAoTOMQ)I,]

Then by the martingale representation result

A M = MO+ fo 1,(s) dw.4 (3.1)

for some predictable, square integrable process y. However, because _o.,(x0) is
Markov, writing x = 4,x)

IV, = E[C(fOT(XO))tX] E(C(f,rT(X))] = E[c(&gr(X))IF] = V(t, x).

By the chain rule C(6,T(X)) is differentiable in x. Consequently, V(t, x) is
differentiable in x. By considering the backward equation for &Jx as in [6) we
see V(t, x) is differentiable in t. Therefore, applying the lt6 differentiation rule
to V(t, x) with x =ox)

V(t, e401(x0))= V(O x-0) + J L+ LV) ds+ --. X, dws. (3.2)

Here
d .a 1 d / 2

L= Xo-+- XI Xik l*-

However, V(t, &,(x0)) = M, so the decompositions (3. 1) and (3.2) must be the
same. The bounded variation term in (3.2) is, therefore, zero, i.e.,

av
-+LV=O
as

and (a-1s is wefl ""on) V, is the solution of the backward Kolmogorov equation
with a final condition

C(XT)=V(T XT-)-
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Equating ti~ martingale terms in (3.1) and (3.2)

av
-li(t)- X.

a~x

Differentiating inside the expectation

a £ E[ CC(. T )D. TjFI (by the chain rule)
ax

= E[Cf ($o(XO))DO.1FjD;,.

So

and

M, = E[C(fOr(XO))3+ JE[Cf(eOT(.XO))DO.TJFjD-X,(s, o.,(x 0)) dtv',. (3,4)

Remark 3.1. Note the term E~c(%.T(XO))D,TFA is itself a martingale. If the
representation is written down at i= T

MT = C(eOT(XO))

E~c( ojr(xo))] + JE[cg(.,rvo))Do.TfjF,] D-'X dw'.(3)

Also, the representation (3.4) holds for vector (or matrix) functions c.

If we take c( ) to be the identity map on R", (3.5) gives

&A~rXO) =E[6,T(XO)] + E [ DOT1 F ]D-' dsv .<

Also, if we consider (3.5) for a second smooth bounded function g and take the

expected value of the product of each side, we see

+O' 1 0. " ~ s (3.6)

Definition 3.2. The Malliavin matrix for the system (2.1) is

[ ID,--Xu)X-.(u)D*-' duil

Note something resembling MO, occurs in (3.6).

Z-'4
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4. Homogeneous Chaos Expansions

Consider an enlarged system with components e') (f, D). The stochastic
differential equation for (') is, therefore, the system (2.1) and (2.3). The

A coefficie: ts in (2.3) are no longer bounded, but following Norris [8] a sequence
of "triangular" systems can-be considered-and the results on stochastic flows still
hold. We can, therefore, consider the Jacobian D"') of the system , and a
system f(2) = (f(I), D(1)). Proceeding in this way 6(") is a system with components
((-,D-)). Write

c)= 0c Do.T,

c(2) =ac D() etc.a (I) 0,T),

Equation (3.4) can then be written

c(o .(Xo)) = E[c(6o.T(Xo))]+ f () - di,. (4.1)

However, E[c )(1o.)IF,] can be represented, as in Section 3, as a stochastic
integral

E[c")IF]=E[ct,)]+ f (2) I F,)Ef c IjD")-,X')(sj) dwiv

Here, X ') is the coefficient vector field of w' in the system defining .
Substituting in (4.1)

C(&T(XO)) = E[c] + E[c( 1'I o. D X- dw

w+ fT (U jF D(",X 9)~(s,) divw, c(2)1 's 'sD-'Xi d wv . (4.2)

Now E[c(2)IF,] can be expressed as a stochastic integral and the result substituted
in (4.2). Proceeding in this way we obtain the homogeneous chaos expansion of
the random variable C(4.-T(XO)). The repeated stochastic integrals do not involve
c but only the Jacobians D(k) and coefficients X(k).

5. Integration by Parts

Lemma 5.1. Suppose u = (u .,...., u,) is a square integrable predictable process.
Then

r T r no r rT I

E[C(fO.T(XO)) JO u1 dw,'J Y E LCfe6O.T(XO))DO.T J D-oX(s)u,(s) ds]
t a

f _ - : ,_ - 7- C --. -
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Proof Consider the representation (3.5) for C(foT(Xo)). Multiply by IT u, dwi
and, using Fubini's theorem, take the expectation. 0

Corollary 5.2. Take ui(s)= (DO'Xj(s))*. Then

E[) (Dg.'X,(s))* dw ] = E[c(eo.T(Xo))Do.rMo.r]. (5.1)

Remark 5.3. Consider a product function h(fo.T(xo)) = c(fO.(Xo))g(fO.T(xo)) and
apply Corollary 5.2 to h. Then

0T(D.,X,) dw'= E[(cfg+cgf)Do.TMor]. (5.2)

We would like to take g MoD in (5.2) so that we can obtain a bound for
cf. This can be done by considering, again following Norris [8], a hierarchy of
stochastic systems similar to, but different from, those introduced in Section 4.

This time write p(°)(w, s, 1, x) =,.l(x) for the flow defined by (2.1) and
D .,(x) = D,.I(x) for its Jacobian. R(o)= j'(D,Xj(u))* dw', and M.)= M., is
the Malliavin matrix defined in (3.2). Note that M,,, can be considered as the
predictable quadratic variation of the tensor product of R(°) with its adjoint, that
is M(o)= (o)(DR(o)'\.

Now consider an enlarged system 4o(t) with components
((1) = (p(o), D(O), R(O), M(O)).

The results of Norris [8] on stochastic flows allow us to discuss the Jacobian
D"') of (p('). Assume X,') is the coefficient of w' in the system describing (pl,
and write

MO() = () - (

Then define
((2)= ((,l, Dl , RO , MO)

and inductively, p(n+)=((,° ), D "), R=n), M(")). Write V, for the gradient
operator in the components of 9('). The following result is established like
equation (5.2) by considering the martingale representation (3.5) of the produce
cg.

Theorem 5.4. Suppose c is a bounded C' scalar fimction on Rd with bounded
derivatives. Let g be a C' possibly vector, or matrix, valued finction on the state
space of p(") such that g(g(")(0, T, xo)) and Vgip(")(0, T, xo)) are both in some
LP(fl). Then

~E~c(,(°'(O, T))g((" )(O, T))@ oR(o)]

= ~~Er(V.C)(,, (0)(0, r\,,,^ ,'t . "r', . .

z- + E[c(9(0(0, Vn (n)(0, T-'r , (5.3)

-~

I
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Corollary- 5.5.- Gronwall's inequality shows that D-' is in all the Ll'(fl) spaces,
SO if Mo. is in some L(fl) -taking g(q~(O; ))0 - i (.3

Ec(rxo))] =Ec(f% T(xo)) M--- ROP1T]

Because c is bounded we, therefore, have the following result:

Theorem 5.6. Suppose f4.r(xo) is the solution of (2.1) and c is any smooth bounded
function with bounded derivatives. Then if M T, is in some LP'(n)

IE[Cf(&,T(XO))II 5 K sup ic(x)I. (5.4)

Remark 5.7. It is well known that (5.4) implies that the random variable f.T(XO)

has a density d(x). To show the density d is smooth we wish to establish
inequalities of the form

E~ [2:c f.(x)lI :K sup 1441)J (5.5)

Here

Wg aj"' 42P a~dd

An argument from Fourier analysis (see [8]3) shows that if (5.5) is true for all a
with Ja =at+* + ad5 where nz-d + 1, then the random variable 6OT(XO)

has a density d(x) which is in Cn-d,(R d).

Apply Corollary 5.5 to c,, rather than c so

E[Cff(&(XO))3 = E[Cf (OT-))MO.TD.r® RD.T]

- E[cf(4O.T(XO))(Vig)(DO.T, M.)D)M~ VI (5.6)
Consider the two terms on the right of (5.6) and write M MOT, D DOT, etc.
Let

g =9 M- -' M'-

and

Applying Theorem 5.4 to cg, and cg2,

E[C(fOT(XO))g 1(qp'))® R = E[cf(gQT(XO))M D'®R

+E[C(eO.T(XO))(V 2gI (P()) (5.7)

r and

+ E[~OTX)(~Z)93) 3M3] (5.8)
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Using (5.7) and (5.8) the terms on the right of (5.6) can be replaced by terms
involving c. This procedure can be iterated using Theorem 5.4 and the following
result established:

Theorem 5.8. Suppose M -  is in all spaces L'(0), 1 p < *. Then the random
variable 6.T(Xo) has a smooth density.

The remaining questions concern the existence and integrability properties
of Mo.r. These have been carefully studied (see [5] or [8], for example). In fact
Mo.T is in LP(fl) for all p, Is p <oo, if the following condition of Hrmander
is satisfied:

Condition 5.9. The vector space V(xo) generated by the coefficient vector fields
X ..... , X,, and the brackets [Xi, X], 0: - i,j - n, [X, [Xj, X ], Os ij, k:5 i,
etc., evaluated at xor R", is the whole of Rd.
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Summary

The adjoint process and minimum principle for a partially observed diffusion
can be obtained by differentiating the statement that a control u* is optimal. Using
stochastic flows the variation in the cost resulting from a change in an optimal control
can be computed explicitly. The technical difficulty is to justify the differentiation.

1. INTRODUCTION.

Using stochastic flows we calculate below the change in the cost due to a 'strong' variation

of an optimal control. Differentiating this quantity enables us to identify the adjoint, or co-

state variable, and give a partially observed minimum principle. If the drift coefficient is

differentiable in the control variable the related result of Bensoussan [2] follows from our

theorem. Full details will appear in [1]. The method appears simpler than that employed in

Haussman [4].
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2. DYNAMICAL EQUATIONS.

Suppose the state of a stochastic system is described by the equation

dt = f(tt,u)dt + g(t, t)dwt,

t E R, Co = x0 , 0 < t < T. (2.1)

The control variable u will take values in a compact subset U of some Euclidean space Rk.

We shall assume

A,: xo E Rd is given.

A 2: f: [0, T] x Rd x U -- Rd is Borel measurable, continuous in u for each (t, x), continuously

differentiable in x for each (t, u) and

(1 + IxD-lIf(t,x,u)l + If(t,x, u)l _ K1 .

A 3 : g [0, TI x Rd -+ Rd ® R' is a matrix valued function, Borel measurable, continuously

differentiable in x, and for some K 2:

Ig(t, x)! + 1g,(t, x)I < K2 .

The observation process is defined by

dy, = h(C,)dt + dv, (2.2)

yt E Rm , Yo = 0, 0 < t < T.

In (2.1) and (2.2) w = (w ,...,w') and v = (v ,...,.v) are independent Brownian

notions defined on a probability space (Q, F, P).

Furthermore, we assume

A4: h : Rd -* R is Borel measurable, continuously differentiable in x and

Ih(t,x)l + Ih (t, x)l < K3.

REMARK 2.1. These hypotheses can be weakened to those discussed by Haussman [4].

See [1].

Write P for the Wiener measure on C([O,T],R") and y for the Wiener measure on

c([0, T], Rm ).

Q = C([O,T],R') x C([O,T],R m )



and the coordinate functions in R2 will be denoted (xt, yt). Wiener measure P on 92 is

P(dx, dy) = P(dx)y(dy).

DEFINITION 2.2. Y = {Yt} will be the right continuous, complete filtration on

C([O, T!, R') generated by

Y0 = 0{y,: s < t}.

The set of admissible control functions F will be the Y-predictable functions defined on

[o, T] x C([O,T,Rn) with values in U.

For u E U and x E Rd, ',(x) will denote the strong solution of (2.1) corresponding to

uwith Cu = x.

Define

Z,,(x) = exp (h( ,r(x))'dy, - jh(,(X))2dV). (2.3)

Note a version of Z defined for every trajectory y can be obtained by integrating the stochastic

integral in the exponential by parts.

If a new probability measure Pu defined on Q by putting

dPu
- = Zo,((O),

under P' (Cot(Xo),yt) is a solution of the system (2.1) and (2.2). That is, under Pu, Ct(xo)

remains a strong solution of (2.1) and there is an independent Brownian motion v such that

yt satisfies (2.2).

Because of hypothesis A4 , for 0 < t < T easy applications of Burkholder's and Gronwall's

inequalities show that

E[(Z ,,(Xo))P] < c (2.4)

foralluELUandallp, 1 <p<oo.

COST 2.3. We shall suppose the cost is purely terminal and equals

c( ,T(X0))

where c i bOundeId, di.fer.tiabl--e function. " control u E U is used the expected cost is

J(u) = Eu[(GT(Xo)).

With respect to P, under which yj is a Brownian motion

A~U) =E[Z ,T(Xo)cV(u,T(Xo))1. (2.5)



A control u* E U is optimal if

J(u_<5 J(u)

for all u E U. We shall suppose there is an optimal control u*.

3. FLOWS.

For u E U and x E Rd consider the strong solution

u

J,t(X) = X + jf(r, u,r(x), ur)dr + jg(r, Cr(X))dWr. (3.1)

We wish to consider the behaviour of C1,t(x) for each trajectory y of the observation process.

In fact the results of Bismut [3] and Kunita [6] extend and show the map

cut :d _+ Rd

is, almost surely, a diffeomorphism for each y E C([O,T], Rm).

Write

IICu(x0)I[t = sup kCU,.(Xo)I.
0<,<t

Then, using Gronwall's and Jensen's inequalities, for any p, 1 < p < 00

IIu(Xo)II' - CQ( + I)oIP + g(r, ,r(X))dWr

almost surely, for some constant C.

Using A3 and Burkholder's inequality

I[ "(X0)ITELP for 1<p<oo.

Suppose u* is an optimal control, and write

J for

The Jacobian S is the matrix solution Ct of the equation
ax

dCt = f(t, ,t(x),u*)Ctdt + Egli(t, C,,(x))Ctdw. (3.2)

with C. = I.



Here g(') is the ith column of g and I is the n x n identity matrix. Writing IC lIT =

sup0 <,<j IC.I and using Burkholder's, Jensen's and Gronwall's inequalities we see IICIIT E LP,

1l<p<oo.

Consider the matrix valued process D defined by

A = I- f Drfz(r,6,r(x),ur)dr

- >1 ~ ~ j~g (, r(X))dvr4 + SJDr(gz~i (r, C~;,r(X))) 2 dr (3)
i~li=l

Then as in [5] or [6] d(DtCt) = 0 and DC, = I so

Dt=Cj = \

Furthermore, IjDflt E L P, 1 < p < 0o.
n t i

Suppose zj = z, + At + Z'i= fHidw, is a d-dimensional semimartingale. Bismut [31

shows one can consider the process jt(zt) and in fact:

,t(z,= z, + (f(, :,r(r),u;)

z r a x;rrr

+ (Hi H"" di=1

1 O r (H1, Hi)) dr

+ * z+d r ' t t*(:,r0
" +r (zr)dAr .- (g(/)(r, 6:.r(Zr)) + "t (Zr)Hi) dwr.4

DEFINITION 3.1. For s E [0,TI, h > 0 such that 0 <_ s < s + h < T, for any EiU, and

A E Y consider a 'strong' variation u of u* defined by

f u*(tw) if(tw) f [ss+h] x A
t ii(t,w) if(t,w) E [s,s+h] xA.

THEOREM 3.2. For any strong variation u of u* consider the process

= j t  * ( ( (35)zt--x+ J, "rx , )) (f(r,C..,r(zr),Ur)- f(r,*,r(Zr),U,.))dr. 35



Then the process C,(zt) -is indistinguishable from C',~(x).

PROOF. We shall substitute in (3.4), (noting Hi = 0 for all i). Therefore,

pf(

S(zt)--x + f(r, :,r(Zr), ur)dr

+] - ) (2Ox (zr)) (f(r, ;,,(Zr), U,.) -f(r, *,r(z,), u*))dr

+ f g(r, C,,(z))dwr.

The solution of (3.1) is unique, so Ct(zt) = Cut(x). Note u(t) u*(t) if t > s +h so zi = zs+h

if t > s + h and

C:,,(Z,) = ,,t(Z,+h)

= Ca+h,t(C,.+h(X)). (3.6)

4. THE EXPONENTIAL DENSITY.

Consider the (d + 1)-dimensional system

c* x) + isf(r, Cr(-t), Ut4)dr + 1 , r,(X))dWr

Z*,,(X,z) = z + Z,,(x, z)h(,,r())'dY. (4.1)

That is, we are considering an augmented flow (6, Z) in R d+1 in which Z* has a variable

initial condition z E R. Note:

z:.,(X,Z) = zZ,.,().

The map (x, z) -4 (C,,(x), Z,1 (x, z)) is, almost surely, a diffeomorphism of Rd+'. Clearly,

6q, =f = 0 and Og = .

z o, nz d

The Jacobian of this augmented map is represented by the matrix

21iL 0
az ax



In particular, from (4.1), for 1 < i < d

mz M n h ak,.,

a- (z*r(,z) h ) dy .  (4.2)

We are interested in solutions of (4.1) and (4.2) only when z = 1, so as above we write

Z:,,(x) for Z*,t(x,1) etc.

LEMMA 4.1. az *' ( t ac ' '
xx= za*,t(x) h.(C*,t(x)).-- radr)

where, as in (2.2), dv, = dy, - h(F*t,(x))dt.

PROOF. From (4.2)

= f ,(,, h' (,r(x)) + Z:,r(x)h,(C;,r(x)) 0 ')a = a--x ax +dyr. (4.3)

Write

Then
Z,,(x) 1 + Z*, (x)h'(C*,r())dYr

and the product rule gives

L,,(x) = L,,()h'(;,r())dYr

tZ,.,r()h-xdyr.

£ ax

Consequently, L,,t(x) is also a solution of (4.3), so by uniqueness

L.,t(x) = -3g
ax

LEMMA 4.2. If zt is as defined in (q 5)

Zs.,(z,) = Z#,,(x).

PROOF.

Zit(x) 1 + Zu,,(x)h'(Cr())dr. (4.4)



Applying (3.4) to Z* (zj) we see:

Z* t(zr) =1+ jZ:,(z)h'( :*r(z,))dy,

-1±+ jZr(z)h'(6'(x))dyr_

by Theorem 3.2. However, (4.4) has a unique solution so

Zs*g(zr) = stx)

Again, note that for t > s + h

.Iiz)=Z,jtz,+h). (4.5)

5. THE ADJOINT PROCESS.

u* will be _.n optimal control and u a perturbation of u* as in Definition 31. Again write

X=

The minimum cost is

J(U*) = -E[Z10,T(Xo0M(*,T(X0))I

= EfZ0*,,(Xo )z8T(X)C(6:,T(X))1.

Also,

J(U) = EZO*, (XO)Z~',T(X)C( ,T(X))1

= EIz;,.(XO)Z:,T(Z.+h )C(CT(Z.+h ))1

by (3.6) and (4.5). Recall Z;,T(.) and C(V,,T(')) are diferentiable almost surely, with contin-

uous and utniformly integrable derivatives. Consequently, -writing

P(s,z,) =o,(oZ*T-r)C(:TZ)2 (z)

+ C(C,T(Zr)) hC;(,.)) (Zr)dL/!)(8,~ (Zr))



for s < r < s + h, we have

J(u) - J(u*) = E[Z* ,(XO){Zt(Z-+h)C(C,t(Z'+h))- Z:,T(X)C(CT(X)))]

= E [j r(s, zr)(f(r, C:,r(Zr), Ur)- f(r, *r(X), *;))dj. (5.1)

This formula describes the change in the expected cost arising from the perturbation u of

the optimal control. However, J(u) J(u*) for all u E U so the right hand side of (5.1) is

non-negative for all h > 0. We wish to divide by h > 0 and let h -+ 0. This requires some

careful arguments using the uniform boundedness of the random variables and the monotone

class theorem. It can be shown that there is a set S C [0, T] of zero Lebesgue measure such

that if s S

E[p(s, x)(f(s, c,,(xo), u) - f(s, c,s(xo), u,*))IAi _ 0 (5.2)

for any u E U and A E Y,.

Details of this argument can be found in [1]. Define

p,(X) = E* [caxLT(X0)) . AT(

T a c ;d, ) . w
+ C(CO,T(XO)) (is h4(,,.(xo)) a x~d~jY~

where x = ,,(xo) and E* is the expectation under P* = pu'.

In (5.2) we have established the following:

THEOREM 5.1. p,(x) is the adjoint process for the partially observed optimal control prob-

lem. That is, if u* E FU is optimal there is a set S C [0, T] of zero Lebesgue measure such

that for s 0 S

E*[p,(x)f(s,x,u*)IY, >__ E*[p,(x)f(s,x,u)IY.I a.s. (5.3)

so the optimal control u* almost surely minimizes the conditional Hamiltonian.

If x = ,,(xo) has a conditional density q.(x) under P*, and if f is differentiable in u,

k.3) implies

) ut(s)) J s x) a (s, x, u )q,(x)dx > 0.~JRd

iT1 i u
This is the result of Bensoussan [2].
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ORDINARY DIFFERENTIAL EQUATIONS AND FLOWS

ROBERT J. ELLIOTT
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AND APPLIED MATHEMATICS INSTITUTE

1. INTRODUCTION.

The theory of stochastic flows was first developed in the works of Kunita [5] and

Bismut [2]; they have been used to discuss, for example, stochastic control [1] and the

Malliavin calculus [41. However, some of the corresponding ideas concerning deterministic

flows do not appear so well known to those working in ordinary differential equations,

although they are probably familiar in terms of vector fields and their pull-backs to differ-

ential toijologists.

2. DYNAMICS.

Consider an ordinary differential equation

d~t f f(t,C )dt (2.1)

where C e pd and t > 0.

For simplicity we shall suppose f : [0, oo) x Rd - Rd is C' and of linear growth.

Write ef (x) = Cat (x) for the unique solution of (2.1) which is such that Ce, (x) = x, i.e.,

Ca,t(x) = x + f(u, e,u (x))du. (2.2)

Partially supported by NSERC grant A-7964 and the Air Force Office of Scientific Research,
United States Air Force, under grant AFOSR-86-0332.



Then it is known the map

X - , , (z)

is differentiable. Write

D,j (x) = -,t = at x
ax

for its derivative. Then D is the solution of the linearized equation

dD = fC (t, )Ddt (2.3)

with D,,, = I, the d x d identity matrix.

In integrated form this is

Ds,t = I+ ff(u, 8,,u(x))Ds,,udu. (2.4)

Consider the matrix V,t defined by

= I- Z v6f (u, ,,, (x))du (2.5)

i.e., dV = -VfC(t, )dt. Then V,,,D,,, = I and from (2.3) and (2.5)

d(VD) = (dV)D + V(dD)

= -Vf Ddt + Vf Ddt

=0

so Vs,t D,,t = I for all t > 0. Consequently,

-~= 1 - (c9Ca(X)y

Suppose zt, for t > 8, is some differentiable path in Rd. Rather than the map x - C.,t (x)

we can consider the composite map

2



Note t occurs twice on the right, so taking the derivative we have:

e83't (zt) - z" + jf(u, ee,u (zu))du

+ (z.)dzu. (2.6)

Suppose g : Rd -+ Rd is a second function like f. Consider the equation

de = g(t, )dt. (2.7)

The unique solution of (2.7) starting at x E Rd at time s will be denoted by s9t (z), so

et () = x + Ig(u, s, (x))du. (2.8)

We then have the following formula for eg.

THEOREM 2.1. ,,t(x) = eft (zt) where

= X+ (a U(ZU) (g(U,, ,.,(z,)) - f(u,J,u(z.)))du.

PROOF. As above, we shall write ,t (x) for [,ft (t) etc. Then, substituting this zt in

(2.6):

(zt) = x + jf(u,6,u (zu))du

+ '1o a,,(z,,) ) ((UX.,z) ,-

= X + fg(u, &,u (zu))du.

However, (2.8) has a unique solution so

C, , Wx = 6,t (--t).

This result is particularly nseful in optimal control when one wishes to compute the vari-
ation in the cost due to a perturbation of an optimal control. See 11j and [4).
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3. BACKWARD EQUATIONS.

Consider the solution Ca,t (x) of (2.2). If F : Rd - R is a C2 function, by the chain

rule

F(8 ,t (x)) = F(x) + L FCR,u (x))f(u, C,,u (x))du. (3.1)

Consider a partition 7r = {6 = to < ti <... < t, = t} of Is, tJ and write

17rl = max jtj+j - tjI. Then one can also write
S

n-1

F(C,t, (z)) - F(x)= (F(Ctk,t (x)) - F(,k+I ,t (x))). (3.2)
k--0

If s < r < t, by the uniqueness of the solutions of (2.2), we have the semigroup property

of the flows

6,,t (x) = rt (s,r (X)). (3.3)

For the k-th term in the sum (3.2):

F(tet (x)) - FCt,, ,t (x)) = F(Ctk+l ,t (Ctk,tk+ (x))) - F(tA,+ ,i (x))

= F(Ctk1 ,t (y)) - F(6tk+l ,t (x))

where
tk+l

Y = k,tk+1 (X) = X + f(u, tk,u (x))du.

By the mean value theorem this difference is:

= (6k.1.4 (Z)) aX ] f(u, tk,u (x))du

where z is some point on the line joining x and y. Using the differentiability of the functions

involved, this can be written as

= F(etk+,tx 06tk.4.1 A(X) .f(tk+l ,x)(tk+1 -- tk) + Rk

ax

4
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where IRk I < C(tk+l - tk) 2 < Cl?]r(tk+l - tk) for some uniform bound C. The left side

of (3.2) does not involve the partition 7r; considering partitions such that 17ri -* 0 we have

the following 'backward' equation:

F( a t ( Fle +x)) f(u,x)du. (3.4)
F(61,t Wx) = FWx + F t, 49X))

Clearly (3.4) holds for vector functions F. The solution $8,t (x) of (2.1) is the 'forward'

flow from x. Taking F : Rd -* Rd to be the identity, F( ) = , we have from (3.4) the

following 'backward' equation for the 'forward' flow:

est (X) = x + j ax f(u, x)du. (3.5)

By analogy with (2.1) we can also consider the following 'backward' equation:

-d,= -f(s, C,t)ds (3.6)

with a terminal condition x at time t. That is, we consider the 'backward' process a,t ()

defined by

(=) = - j f ,t (x))du (3.7)

so Ct,t (x) = x. Again, the map x 6 C,t (x) is differentiable with a derivative 5x. For

a smooth bounded function F: Rd -- R the chain rule, (in the s variable), gives:

F(,Ct (X)) = F(x) - jF ,t (x))f(u, &t (x))du. (3.8)

This is the 'backward' equation for the 'backward' flow. Similarly to (3.4) we can establish

the 'forward' equation for the 'backward' flow:

pf f -11 71 t f ~t 7 1.. N V.dA.u(' W -(39-V-04 VI) -, .,) 18 PC 1.8M (Ux f(u, x)du. (3.9)

In particular, taking F to be the identity map on Rd, F() =

A t a& (xW
6, (X) =x - f(u,x)du. (3.10)Ad



F

Approximation arguments, for example, would tell us that

G0,t (&,t Wx) = ,t C6,t W=)- = .X

However, let us proceed as follows: Differentiating (3.7) the backward equation for the
backward derivative ax t = ,,t is

D,,t = I- ]f (u, t ,t (x))Db,t du. (3.11)

Consider the augmented flow defined by the pair of equations (3.7), (3.11), with the 'vari-

able' terminal condition Dt,t = D. That is, consider &,t (x) defined by (3.7) and D),,t (x, D)

defined by

Dbt(x,D) = D - ff(u,t (x))Du,t (x,D)du. (3.12)

Note equations (3.11) and (3.12) are linear, so that, if Do,t = Ds,t (x, I) = bsi (x) is the

unique solution of (3.11), then &8,t (x)D = D,,t (x,D) is the unique solution of (3.12).

Therefore,
abot (x, D)(D = D,,t (x). (3.13)

Applying (3.10) to b 3,t (x, D), and noting derivatives in both variables x and D are

involved, the forward equation for b,,t (x, D) is
tabD,, (x, D)

b 8 ,t (x, D) = D - j x f(u,x)du

1 oDs,(x,DD f (u,x)du.

Putting D = I and substituting (3.13), the forward equation for bD,t (x,I) = D,,t (x) is:

Db,t (x) = I(- ft  - u((x)) f(ux)xd"

Using (2.6) we have

.bD,.,(Ct (x)) - ft a'b .(C.. (x))f(u, (x))du

-ft (C, (x))f (u, ,,, (x)),du +(x))f(u, 6,u (x))du

Ds Ufu,(x))du Ox

-- I- ] D,U (ea, (x))fe (u, °, (x))du.

6



Therefore, b8,t (C,,t (x)) satisfies the same equation, (2.5), as that defining V,t. By unique-

ness, we have the following result:

THEOREM 3.1. bs,t(Cs,t(x)) = V,t = D, (x).

Similar arguments in the opposite time direction applied to Da,t (x), defined by (2.4),

show that

D,,t (&,t (x)) = D,-1 (x). (3.14)

Using flows the following result can be established:

THEOREM 3.2. ea,t(e,,t(X)) = X.

PROOF. Applying (2.6), and using the forward equation (3.10) for a,t (x)

6'~t (&'t Wx) X + f (u, es~ (&,u (x)))du

- ] , ,u (x))b,,, (x),f(u, X)du

t t
X + (f (u, 6u(.,u (x))) - f(u, x))du (3.15)

by (3.14). However, e,,t (,t (x)) = x is a solution of (3.15), so the result follows because

(3.15) has a unique solution.

Similar arguments again show s,,t (est ()) = X.

References

[1] J. Baras, R.J. Elliott and M. Kohlmann, The partially observed stochastic minimum
principle. Technical Report, Department of Statistics and Applied Probability, Uni-
versity of Alberta, 1987.

t21 J.M. Bismut, Mecanique Al'atoire, Lecture Notes in Math. 866, Springer-Verlag, 1981.

[3) R.J. Elliott and M. Kohlmann, Integration by parts, homogeneous chaos expansions
and smooth densities. Technical Report, Department of Statistics and Applied Prob-
ability, University of Alberta, 1987.

141 R.J. Elliott. M. Kohlmann and .J. Mr rki. A proof of the m-in;,,i, c .. e ,

flows.

[5) H. Kunita, Stochastic partial differential equations connected with nonlinear filtering,
Lecture Notes in Math. 972, Springer-Verlag, 1983.

7

aa . . . .. >.. . -.. i



Systems & Coi,!rol Letters 12 (1989) 63-69 63
North-Hollnd

The variational principle for optimal control
of diffusions with partial information

Robert J. ELLIOTT
Department of Statistics and Applied Probability, Univeristy of A Iberia, Edmonton, Alberta, Canada T6G 2G1

Michael KOHLMANN
Fakultdit fzr WVirtscliaftswissenschzaften und Statistik, Uniersitiit Konstanz, D7750 Konstanz, F. R. Germany

Received 29 August 1988

Abstract: Strong variations are described for the r-optimal control of a class of control problems for systems described by stochastic
diffusion equations. The differentiation process developed identifies the adjoint process.
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1. Introduction

In an earlier paper [41 the authors have applied a powerful non-convex minimization result established
by Ekeland [3] to derive a local approximate minimum principle for a partially observed control problem.
A metric is introduced on the space of admissible controls which measures the distance between two
controls. A strong variation of an e-optimal control leads to an inequality, where on the right hand side
this metric appears. As it can be expressed by a measure on the set where the perturbed --optimal control
and the control itself differ, the inequality may be differentiated to obtain the local minimum principle.

In [1] theorems by Bismut [2] and Kunita [6] on stochastic flows are applied to give an easy and explicit
calculation of the change in the cost due to the strong variation of an optimal control. These results are
used here to describe the strong variation of an e-optimal control. Using the result of Ekeland [31 the
resulting inequality can be differentiated, so giving a completely new proof of the results in [4].
Furthermore, the differentiation process identifies the adjoint process; this is the main contribution of this
paper. The underlying model here is the one considered in [1] and differs from the one in [4]: the drift
coefficients f, h and the diffusion coefficient g in both signal and observation process depend only on the
current state of the system, and not on the whole past as in [4]; the controls, however, need not be Markov.
Furthermore, we impose differentiability assumptions on these coefficients and on the cost functional.

To apply Ekeland's result we show that the cost function of the control problem described in Section 2
is continuous when the control functions are topologized using the metric

d(u,, u2 ) =/P({(t, x) e [0,1] X C([0,1], R"'") I ut(t, x) :* u,(t, x)}). (1.1)

Here P is the product of Lebesgue measure on [0,1] and Wiener measure on C([0,1], i"').
Then Ekeland's result [3] tells us that for any e > 0 there is a control function u, such that

J(u,) - inf J(u) + E (1.2)

and for ail other control functions it,
J( u) >J(u,) - ed(uc, u). (1.3)

0167-6911/89/$3,50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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That is, ui, minimizes the functional

J.(u) =J(u) + ed(u, u,). (1.4)

It is then shovvn that u, minimizes to within E the conditional expectation of a certain Hamiltonian
H(s, a, , p, u), where ' is the output of the system for control u,, and p is an adjoint process which will
be derived explicitly.

2. The control problem

We shall treat the same control problem as in [1]. Let is quickly sketch its basic properties.
Suppose the state of the system is described by the stochastic differential equation

d ,=f(t,,, it) dt+ 8(t, ) dw,. Re r, o= x o-GRd, 0 <1. (2.1)

We shall make the following assumptions:

Al. xO is given; if x, is a random variable and Po its distribution the situation when f Ix 1'7 dPo < cc for
some q > n + I can be treated by including an extra integration with respect to P0 .

A2. f. [0.1] x R U -* Rd is Borel measurable, continuous on the compact metric space U for each
(t, x), continuously differentiable in x with derivative f, and for some constant K1,

(1 + Ix)I 'If(It x, u)I+ I f,(t, x, u) I _< K,.

A3. g. [0.1] x Rd - R" ® R" is a matrix valued function, Borel measurable, continuously differentiable in
x with derivative g,, and for some constant K,,

Ig(t, x)I+Ig,(t. x)j I<K,.

The observation process is given by

d),=Jh(,) dt+di,, Ih'". y=O, 01 1. (2.2)

In the above equations w = (w.it,") and i'= (i,* .. v') are independent Brownian notions. We
also assume:

A4. h: Rd __* s"' is Borel measurable, continuously differentiable in x, and for some constant K 3.

Ih(t, x) + Ih,(t, x) 1< K3.

As noted in [1) these conditions can be relaxed.
Let P denote Wiener measure on C([0,1], R") and [t denote Wiener measure on C([0,11, R'"). Consider

the basic space S2 = C([0,1], R") x C([0,1], R") and define Wiener measure P on S2 by

P(dw, dy) = P(dw)IL(dy).

The control parameter u will take values in a compact subset U of some Euclidean space Rk . Let
Y= { I ' be the right continuous, complete filtration generated by (y,. s < t). Then an admissible control
is a mapping

1: [0,1] x C([0,1], R ) -, U

which is Y-predictable. Write 0&i for the set of admissible controls.

, - = I.To
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For u G e' and X E Rd write ,,1 (x) for the strong solution of (2.1) corresponding to control it and such
that s,",x) = x. Put

soluton of(21) nd (22), tat i remains a strong solution of (2.1) and there is an independent
Brwinmotion v such that y, satisfies (2.2).

We hal cosidr aterminal cost given by some continuously differentiable, bounded function
c( "I xo)- Te cst oradmissible control it e O2/ then is

J(u) =E,, [c( O~j(xo))] = E[ Zo"1(x 0 ) c(6 0 ,1(XO))] (2.3)

It is shown in !41 that A~u) is continuous on V, when V~ is given the topology induced by the metric

d1(ii, "12) = fi({(, y) G [0,1] X C([0,l], Rn? ... (t, y') :0 it,(t, y)))

Furthermore, it is shown there that (0&, d) is a complete metric space.

3. Stochastic flows

It is not known whether there is alNways an optimal control for the problem described in Section 2.
However, there is always an c-optimial control for any F > 0. Consider such an E-optimal control ti,(. il)
satisfying (1.2) and (1.3). From our obser~ations in [11 there exists a countable, dense subset of -,Z/, and for
the strong variations below we only take elements from this subset.

Let u1h be a strong variation of u, defined by:

1uh(t. (u(t, y) if s: <s+h : 1.

\uj(t, Y') otherwise.

For notational convenience drop the subscript h in it,, and let ()be the strong solution of the dynamics
(2.1) with input it, and (c',) the solution for input it, i.e.,

X X +(x =xiff( r. ~x ), it,( r)) d r +f g (r, ~r(X) dl (3.1)
S S

and

= x+ ff , ~(x), 11(r)) dr + fgr '()cl..(3.2)

S S

It is well known (see [61) that there are versions of these solutions such that ()Rd R d is almost
surely a diffeomorphism, with a Jacobian C =(, /a)x which is the solution of the equation

d

d, =fz,,(x), i')G, d t + E g.,(t, ',x))C, lw~, Cs I (n X it identity math (3.3))

Here fX denotes the partial derivative of f .kith respect to x and g' denotes the gradient of the i-th coIlumn
of g.

The inverse of the Jacobian D, = (a ',(x)/ax), C,= I for t s, also satisfies a stochastic differen-
tial matrix equation, namely

D,=I - f Dfx (rt,e(x). :t')' dr - fDg' (?r, cr)

-IjD(g(% . T x dr. (3.4)
IJ,

ZZ i

I-
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Next we describe a change of drift induced by considering a certain semimartingale (z)as the initial
condition in the dynamics equation. This result is due to Bismut [2]. It allows us to consider ",x) as the
unperturbed process with initial condition(z)

Theoremt 3.1. For the perturbation it of it, consider the semimartingale

Z,=X + jt( 8~(Z ) (f r, C.r(7r)7 ur) -f (r, ~.( ,u)) dr. (3.5)

Theni the process ',(z,) is indistinguishable from (x).

Proof. From the results of Bisinut ([21, Theorem 3.1) ',(z,) is a sernimartingale with the representation

S 'g(r, ~.(r)dit. (3.6)
S

That is,

c~o1) =X + f t f(r, ,r(Zr)- 11r) dr + fg(r. .r(AZ) d"wr.
SS

As the solution ( "J(x)) of (3.2) is unique it follows tha 6.,(z,) = f,(x). Note that for t> s +
hi, -,(z, - h S+h.,( S's l,(x)). because it equals uc t ;v + h and So Z, = Zs1 for > s +hI.
0

Next we study the augmented flow ( 1 (x), Z,.1(x, -)), i.e., the diffeom-orphism on R"' 1given by

=S' W X + fIf (r, W~X, i,) d r + f tg(r, s.(x)) dlr,
S S

Zf1,(X) =z + f t Zst x, z)h ( '(x))' dyr. (3.7)

To justify this discussion note there is a strong solution of (3.7) defined for every it E U and y E 0,1
R"), because the stochastic integral in the exponential defining Z can be integrated by parts.

As @8',(x)/8: = 0, af/8z = 0, ag/az 0, the Jacobian for the augmented flow may be represented as

1, ax az j

and thc Jacobian of Z, satisfies

___________ z) t ahzj(CrxW) ae:A(X) WaZx, XZ)
ZZ:,(x, Z) 's~kw z) /r_____ d Y!

ax jZ (X I ~ SIi(axX) ax,

for I is d. Here summation takes place over double indices.
Obviously, we are only interested in the solution of (3.9) for the case z =1. Write Z.",(x) Z.',(x, 1)

and from [1] we cite the following result.
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Lemmna 3.2. (i) The following representation holds:

and (ii) Zs.,(z,) =Z,",(x), where (z,) is the senzimartingale defined in (3.5).

Again note here for t > s 4- It,

sZ,( '., = Z. Z,+h

4. The mininium principle

The cost associated with it' is given by

J~i)= E[1Z'(xO)c( .(xO))I

= E[ZO'.(xO)Z,'(x)c( '.(x))] (wvhere x = 'Jo

and the cost corresponding- to the perturbed control is

J(u) = E [ Zo'(xo) Z.,"(x) c( u ,(x))] = OX)7.. :,h (Sj -)

No~v Z,'.(-) and LQ(-()) are continuousI differentiable, so we can compute the difference between these
costs as:

J(u t ) - J(i) = E jA(s, r. Zr)(f(r. Ur) -flr. 10) 1) dr

where

T (zz,

Then+ax 
dvM x

J(t) - J(u) =J E[A(s. r. Zr,) -A(s. r, x)](f(r. r.r(r). it') -](r. SJ~) it,)) dr
S

+fE[x(s. r, x) - A(r, r, x)j(f(r, '.,(Zr), u') -f(r. $.r- Ur) dr

+ FSh[A(r. r. x)( f(r. Ct (Zr)- i') -f(r. fir( r)U
Js

S-hE [A (r, r, x)(f (r, *,(XO), it) -f (r. '.(x 0 ). u.r))] (hr

=I,(h)+J,(h)+13 (h)+14 (h), say.
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Now

S

KJzsup E[JA(s, -A(s r.x) +1 (x)
s r : s+h)

J1(h)I 5K1r sup E[iA(s, r, X)-A(r, r, x)jI +"0..(X 0)II1,,h)1,

13 (1h K.1z sup E[ IA(r, r, X) Q(I'.(Zr) - S .rX) I1s+J]

The differences on the righit hand side of the three above inequalities are uniformly bounded in some L"
and they converge to zero a.s. when h: goes to zeio. So, the differences converge to zero in Lt,-norm. Then

!inhI/I(hY=O fork=1,2.3.
U 0

From our remark in the beginning of Section 3, it is an element in a countable dense subset of Od. As

is finite, there are null sets N(Vt) and N(u), such that for s 0 N(u) U N(V~) the above expression is
differentiable. amnd

lim h- 1(J(u() - J(u)) = E[A(s, s, x)(f (s, ,5 (x 0 ). it') -f (s, ' 5 (x 0 ). t,)J.

Therefore, from (1.3),

EJ[,I(s, s. x)(f (s. 'J ) it') -f (s. '(xo), it,)J lin (ed(u,. it)~~ e (4.1)

because d(u. V~) :5 h. Using a general result of Kushner [71, the same relation holds for the conditional
expectation Ef -I Y, 1.

Write

US'Ax) Iq ko) 4", d v' YVf)
pj)= ,I (X X) + C(OAXO))f;~~~ Ox)

where F, dunotes expectation uinder Pu,.
Then substituting in (4.1) we arrive at our minimum principle:

Thecorem 4.1. Let it' be an E-optimal control and let i be any control in O2/. Then thzere is a Lebesgue null set
N, such that for s 0 N the following inequalily, holds:

Remark 4.2. (i) Note that if an optimal control u* exists, and if u' is replaced by it* in Theorem 4.1, then
we obtain the minimum principle in [1].

(ii) If 3(u) is Gateaux differentiable we may deduce from Theorem 4.1 the s;-minimurn principle in [5].
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1. Introduction. The theory of sl.ochastic flows was developed by Kunita, 14], and

Bismut, 12]. The concepts and techniques from this theory have been used to discuss the

Mailiavin calculus 11, and have again returned to deterministic flows, 13J. In this paper

we show how concepts from the theory of deterministic flows can be used to provide an

elegant proof of the Pontrjagin minimum principle.

2. The Dynamics of the Optimal Control Problem as a Flow.

Consider the control problem

( =.. 7,t C Rd, Z(0) = X0 , with u(.) measurable, u(t) E U C Rfr' .

We assume that f is sufficiently well-behaved that:

(a) solutions to initial value problems are unique in [0,T] x Rd and each solution

extends to 10, T];

1i



(b) the solution to the IVP (1), x(s) = xo, is a continuously differentiable function

of xo.

Let the associated cost functional, to be minimized, be defined by:

(2) cfx(T)', c[.] : Rd -- R differentiable. We remark that (a), (b) need only hold in a

"tube" of an appropriate sort about an optimal solution (u* (.), x'(.)) of (1), (2).

The Pontrjagin principle states that if (u' (.), z (.))is an optimal solution of (1) (2),

then there exists an absolutely continuous p(.) :[0, T] -+ Rd such that

(3) minp(t) f(t,x (t),v) = p(t) f(t,zx(t), u'(t)) in [0,TJ. In fact p(.) is a solution
vEU

of the adjoint equation to the linearization of (1) about x' (.).

We will show how this principle follows naturally from the use of ideas from the

theory of deterministic flows.

If an initial instant s E 10, TI, an initial value x E R' and a control u(.) are given, we

write the solution of (1) satisfying x(s) = z as u, (z). Here the superscript u indicates the

dependence on the choice of control u(.); in addition we write ut for u(t). If (u* (.), x' (.))

is optimal, we write this pair as (ut, ,, (xo)) and

8, (xo) = xo + fn f (r, 8,r (xo), u;)dr.

For any x E Rd and any s E 10, TJ we now define ,j (x) by the integral equation:

(4) W = X + f(r, r (x), u)dr.

Notice that e,t (x) solves (1) as a function of t, and takes on the value x at t = s, but it is

not necessarily optimal, (unless s = 0, x = ro). Our assumptions imply that ,,t (x) is a

continuously differentiable function of x. Differentiating (4) with respect to x. we obtain

the integral equation defining the matrix D,, (x) W (,t (z)):

(5) D,,t (x) = I + (r, (x), u; )D8, (x)dr.

2

Z.-



I

We now define Vs,g (x) for any x E Rd and any s, t in [0, "'] by the linear integral

equation:

(6) V8,, (X) = I - V,,, (z) )f(r, ,r (x), u)dr.

LEMMA 1. (from [3]). V, 3(x)D,,t(x) = I for all s,t in [0,T), and all x E Rd.

PROOF: Using (5) and (6), we see that

(i) V,, (x)D,,, (x) = I
(ii) d(V,,(x")D.,,t(x)) = +

- V, ,t (z)f(t, ,, (x), ut)D ,,t(x) + V,,t (x)f(t, ,t (x), ut )Dt (x)

=0.

Thus, V,t (x) = (D,,t (x)]- for all s,t in (0,T] and all x E Rd. In particular, we conclude

that D,,t (x) is always invertible.

Next, for any continuous map (path) zt : [0,T] --4R , we consider the composite

map p : t - ,t (zt), i.e., the function 0(t) - (,,t zt) defined for s and t in 10,T] by the

integral equation:

(7) 0(t) = Z' + f(r,0(r), u(r))dr + D, ,, (--r )dr.

This equation is obtained from (4) by differentiation with respect to t.

We now perturb the given optimal control u* (.) in the by now standard manner:

(= u; outside [s,s + hj,

8t i E V inside Is, s+ h],

and define the curve zi : [0, TJ -* Rd by the somewhat improbable integral equation (note

that the subscript (s, r) is reversed from (4)):

f" r f (r,, . .... (z,) "" drVfj zt X + j,, t,,D (z t f(r, .r(z),ur)- f(r,,,(zr),u)]dr.

LEMMA 2.

,(zt) = (x) for all xE R, s andt in (0, T].
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PROOF: By (7) and (9),

c,,(zt) =x+j f(r,F.t(zr),t4)dr+

t

+ j D,r (zr) [Ds,r (zr)] - [f(r, et (Zr), Ur) - f(r, e,t(zr), ur)]dr

- x + , f(r, ;,t (Zr), ur)dr.

The assertion follows from the uniqueness of solutions to (1).

3. The Minimum Principle. If we define x = Es(xo), for a given s E [0, TI, then

the optimal cost can be written

C4[4] = C[( ,T (XO)} C [ ;+hT (;,a +h Wx))1j

for any h > 0, s E (0,T], s + h E 10,T, with x = o,, (xo).

Since u(.) cannot give a lower cost than u*(.),

cV;s+h,T ( ;,s+h (X))] 5 CIIea+h,T (e~u,+h())

thus

(10) c[Es, (X)] - c[ ; (zs+h)] _+ 0

for all s E 10, T], h > 0, (s + h) E [0, T].

Thi ,;ih jdicio,, applIcation of Mc, Value " U... totin uh k:to zero,

leads to the Pontrjagin principle. In fact, by the Mean-Value Theorem,

(9 (x) - C,T (Zi+h )] < 0,
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for s, h as above, where the gradient of c(.) is evaluated somewhere on the line between

VT (x) and ':,T (z,..h) in Rd. Since we will shortly let h decrease to zero, this evaluation

point will become ,T (x) = x.

It follows from (4) and our assumptions on f that

ac

D8 .T [x - Z,+h I < 0)

but here the rows of D,,T = 'a ,T (x)/8x are evaluated at perhaps different points between

x and Z6+h, because the Mean-Value Theorem is only valid for real-valued mappings and

hence must be applied to each component of e,,T. From (9) we can write
O+h

(12) Z- za+h = [D,,, (zr)-' [f(r, ;,r (Zr), U;) - f(r, ;,, (zr), udr.

Combining (11) and (12), dividing by h > 0 and letting h go to zero, we obtain (noting

that D,, = I, z, = x =

> [DC eT if)] D(s:, 8) jf(s, ,,3 U;) - f , L)).

This is the Pontrjagin principle (3) with

(13) (S) = ( )

4. The adjoint equation.

By the semigroup property of the solution flows, for 0 < s < t < T;

(14) ,t (xo) = ',, ( (xo)).

Writing D, = (x) and differentiating (14) by the chain rule

Vs,(= t o,, (o)), (o).

From (13)
a c

p(s) = x ()D,(8; 8,).
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Therefore, using (15)

(16) p(s)Do, (xo) = (XT)Do,T (ZO) = constant.

Differentiating (16) in s

pdD* + (dp)D* = 0.

That is dp = (-pdD')D -1 . (We have noted in Lemma 1 that D 1 = VoJs exists.)

From (5)

dDo = fz(s, O,, (xo), *)D*,,ds.

Therefore, p(s) is the solution of the equation

dp(s) = -p(s)f(s, ,,x(o), u*)ds

with initial condition
P (0 , x * DT.p(o) = ac r~or
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Integration by parts and the Malliavin calculus
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1. Introduction.

From a very simple representation of the integrand in the integral representation of a

martingale, we derive an integration by parts formula. This is used to give a new proof of

the existence of a density of a diffusion process under the hypothesis that the inverse of

the Malliavin matrix is in some LP-space, a result implied '. ::6rmader's condition HI.

Following Malliavin's original proof of this result there have been other approaches to

what is now known as Malliavin's calculus, including those of Stroock (17], Shigekawa (16],

Bismut [4], Bichteler and Fonken [2], and Norris [15]. The main simplification in this

paper is the observation that no infinite dimensional calculus of variations is required.

This calculus can be replaced by ordinary differentiation in finite dimensional spaces.
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2. Some history and the Hi condition.

Let us consider the unique solution ,,j(x) of the stochastic differential equation

ds,.,(x) = Xo(t, .,,t(x))dt + X (t, ,,t(x))dw i

(x) = x E ()

where (wt) = (w, wn') is an rn-dimensional Brownian motion on ,,P) and

X 0 , Xi,...,X., are smooth vector fields on [0, oo) X Iad, all of whose derivatives are

bounded.

It is a well known fact from harmonic analysis that 6O,T(X) has a density if

IEc (o,T(xo))1 :5 K sup c(x)l, (2)
zEIRd

where c is any bounded, smooth function with bounded derivatives [14,17,4,20]. Using

different methods Malliavin (14], Stroock [17], Shigekawa [16], and Bismut (41 showed that

(2) is true if the inverse of the Malliavin matrix AIOT is in some LP(S), and they linked

this result with H6rmander's famous result to conclude that MTV is in all LP(S2), p < oo,

if H6rmander's condition HI is satisfied:

Condition Hi: Xi,...,Xm, [Xi,Xji, [Xi,[Xj,X,],..., i,j,k = 0,...,m atxo span

a d .

Malliavin's approach is based on a function space martingale calculus which comes

from the Ornstein-Uhlenbeck process on Wiener space [14]; this is now known as Malli-

avin's calculus of variations. Shigekawa [161 provided an alternative formulation which

relies on a Sobolev-type extension of Fr6chet derivatives with Wiener measure replacing

the Lebesgue measure in the finite dimensional situation, and he makes no use at all

of the Ornstein-Uhlenbeck process. Stroock [17,18] also avoids this process in his en-

tirely functional-analytic reformulation of the Malliavin calculus. So far the approaches of

Shigekawa and Stroock (also cf. Ikeda and Watanabe's contribution [12]) are reformula-

tions of Malliavin's approach.
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Roughly speaking, these approaches rely on the analysis of a differential operator ,

which may be seen on the one hand as an operation on the Wiener chaos decomposition

of a Brownian functional F(w)

c T (2

C2F(w) Z 1  ... f,,(tj,...,t,,)dwt,...dwj,

or as the generator of a time changed Brownian sheet {S,(t) I (r, t) E [0, oo)2 }, namely

Vr(t) = e&rS"(t)

seen as a process on C(O, cc). For a "good" function c, we then find

c'(F) = ( - 1(Fc(F)) + c(F)IF + FIF) . A- ', (3)

where A is the inverse of the Malliavin matrix A = (DF, DF) = Z(DhiF)2 and Dh

is the directional derivative in the direction of the integrated element h' of a complete

orthonormal system on [0, T]. The analysis of the right hand side of (3) then leads to a

bound on EIc'(F)I as required in (2).

Zakai pointed out that LF may also be seen as the L 2-1imit of

F(w) - E[F(V w + Vt-) I 9 ]

where the relation to the generator of the infinite dimensional Ornstein-Uhlenbeck process

becomes apparent [19,20], as this non-coherent derivative may be interpreted as

a(° - El, h's)lo
8F6) 2 F(w + e Ids L

= DCF - trace D2 F. (4)

Bismut however gives a different approach which expresses the Wiener space deriva-

tives as function space derivatives in a Girsanov functional. The basic idea here is a
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perturbation of Brownian motion by a small drift e f u~ds (u, a predictable function).

Then

D,,F(w) = + e =uds)

However,

E[F(w)] = E[F(w + e f uds) . 7T]

where (T is the Girsanov functional, the solution of

'YT 1-fsusdw,.

With

E[F(w)] = E[F(w + feud,). TJ

- E(F(w)J + -E[DuF(w)] - sE[F(w) f uds]

we find the Bismut integration by parts formula

E[F(w) f udwJ = E[DuF(w)).

Applying this to "nice" functions c(F) g, formally we find

E[c(F)(D,,F)-' f udw] = E[c'(F)(DF)-'D.,F + c(F)D, ((DF)-')]

and

Ec'(F) = E(c(F)(DuF)-' Judw) - E(c(F)DO(DF)-'). (5)

(D,F) now plays the role of the Malliavin matrix, and the assumption that D,,F > 0

for a suitable predictable (us) leads to a bound on jEc'(F)j in (4) as required in (2).

In the survey article, [20], Zakai points out that the Malliavin and Bismut approaches

are not equivalent.

We follow here, more-or-less, the Bismut approach, but where Bismut considers vari-

ations in a function space our formulation reduces the Malliavin calculus to differentiation
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in a finite dimensional space for the situation where the Wiener functional is just a solu-

tion of a diffusion equation as in (1), F(w) = (or(xo). The key observation which leads to

,ur rebult is a martingale representation formula which might be seen as coming from the

folklore of mathematics, but it provides us with a new formulation of the integration by

parts formula, which - as is well known - always plays the fundamental role in Malliavin's

calculus.

3. Representation of martingales.

Consider the solution o,t(xo) of (1) and let c be a twice continuously differentiable

function for which c(G0,T(Xo)) and the components of c (G0,T(Xo)) are integrable. We then

have the following representation for the right continuous version of E[c( o,T(xo)) I Ft]

mr.

THEOREM 3.1. The martingale mt, 0 < t < T, has a representation as

Mi = E[c(CoT(XO))] + j i(s)dw.

with
,T 'Xl,&,(o (6)

^fj(s) = E[c( o,T(XO))Do, I 8 DO'sl o 8 x)) 6

where D,,i is the Jacobian of the stochastic flow,

Note that from the following theorem cited from j3,8j D,,, exists as a solution of a

stochastic differential equation.

TIIEO REM 3.2. There is a map :2 x [0, co) x (0, co) x Il d -- I d such that

(i) for 0 <s < t <T, x e I d , d ,, (x) is the essentially unique solution of (1);
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(ii) for each w, s, t the mnap $,,4 w, -) is Coo(fld, a1 d) with a Jacobian ivhidi satisfies

d D S'f 1 - O (t, G8,f(x))D 8,,dt + ! - t ,( x ) ,d w

DS= 1, the identity matrix;

(iii) the second derivative W,, =- satisfies

,j = a 8 ()I4 5 d +,1() Vid

+ ,t(x))D,,, ® Djt + ..x:L(t, ,,(x))D.,j D,edw

W." =O0E ado a-' (g d.

Proof of 3.1: Any r-martingale (met) may be represented as

mt =mro +jt7:(s) dw'

for a predictable integrand yi As 40 ,e(xo) is Markov

Mt=E[c( oT(XO)) I Fil

= E[c( j,T(X)) I FO]

= Et,.1C(6e,T(X))]

-. V(t, x), where x= Otx)

Then applying Mt's rule to V(t, x), x = &~,t(xo) gives

V(t, G'((xo)) = V(O' xo) + I' (9 + LV) ds

+ j K(s, o,,(x))Xj(s, o,,(xo))dwi
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with

T =2 1:" Xx + . X j' 0'*8x t.Oxj"

As (int) is a martingale, from the uniqueness of semimartingale decomposition we must

have

/OV Li 0
(-5+ =0

and
OV (S,
a G) = -v ,,( o))X , , o,,(xo)).

Differentiating V we thus arrive at

'i(s) = E[c4(6o,T(xo))DoT I Fs]D-jXi(s, o,.(xo)). (7)

0

Now let u(s) = (uI(s), ... u,,(s)) be a square integrable predictable process. Apply-

ing the above representation we find the desired integration by parts formula.

THEOREM 3.3. Under the above assumptions the following equality holds

= U [C (o,'r(XO))Do, 7 IT D-'x(s)uj(s)ds}

by Fubini's theorem.

In particular, putting ui(s) = (D-'X,(s))* and considering the product function

h( o,r(Xo)) = c( o,r(xo))g(o,T(xo) we have

THEOREM 3.4.

E[C(o,r(xo))g(6O,T(XO))] 0 o"xi(s))*dw -E[(Qcg + cg )DoTMoTJ,

where

= ZJ D7,-Xi(u)X*(u)D:,'du.
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M,, is the Malliavin matrix. CD

In order to obtain a bound on c4 we now would like to take

A- n-1

-= ,,T-o,T,

but this function not only depends on O,T. To get around this difficulty we have to enlarge

the system in the following way.

4. Existence of a density for o,T(Xo).

When enlarging the system the results of 3.2 might no longer hold for ,, replaced by

the new system as the coefficients are no longer bounded.

We consider the flow defined by (1), its Jacobian D,,j, the martingale
R8 ,{z) - f(D,,Xi(u))*dw.', and the inverse of the Malliavin matrix

f,, DXi(u)X!(u)D,,u du. Then for

00) (W, s, t, x) = 6,,t(X), x = o,(Xo)

,t (x) = D,,t(x), D = Do,,(xo)

D 0 )(xo) = D,,iD

] (x) = (D-,Xi(u))dw'u (8)

R() ._ S--I 0,U -R

M(°> = M,()

(0)

-3 +DM (x)D, R 'I
M4,(° ) - M + D-  M,,,(x)D*-', M=M,

O,t M f00

the enlarged system 0(1) = ( 0 , D0 , R 0 , M0 ) is Markov. We now would like to apply a result

similar to 3.2 to this enlarged system. Introduce the set SQ(dl,..., dk), a, d, d,. .. , dk
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positive integers, of C' functions X: lRd -+ Iad of the triangular form

X(X)= . )( 2) for x= ( E

xk(XI, X2,...,k)/

and Rd = ad, x ... X IRdk, which satisfy

IIXIIS(,,N) = sup ( sup DX(x) v sup IDjX(j)(x)l) < o
Z:EIRd O<n<N 1 +1XI[ 1i__ik

for all N.

Note that 0' is Markov with coefficients in S(d, d+dP, 2d+d 2 , 2d+&), and following

Norris (151 we may state the extension of 3.2.

THEOREM 4.1. Let Xo, x,... ,Xn E S.(dl,...,dk). Then thereis amap :Q x [0,coo) 2 x

a _+ IRd such that

(i) for 0 < s < t, x E IRd, 0 is the essentialy unique solution of

dxj = Xo(x)dt + Xi(x)dw, X =X;

(ii) for all (w, s, t), A is C' with derivatives of all orders satisfying stochastic differential

equations;

(ini)

sup E sup ID'k(ws~ux)IP
IxI<R 1 s<u<t I

<5 C(p,.R),N)di I..., dk, a, i1 ll Is.N). -- IlX m ls.,,).

Furthermore, we can consider the Jacobian of 00), say DO ), and construct R-(')Sit
D ,-(i)-1. -(1)(w, and le M(1) tRa ,.o.f D X u)dw,, and let ,t 8 (,t 0 ®R(O), be the predictable quadratic variation

of R1 and ft°$.

This 4-tuple defines O2) - (O(),D(l),R(), M(i)) and inductively we can proceed to

define 0(T ) for all n, and Norris' result holds for all c(rs).

Now apply 3.4 to c(0(0)) g(40()) to obtain:
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COROLLARY 4.2.

E~c( 01())g((' )) 0 R(0)] = E[(Voc)(¢°)g(¢')Do,TMo,T]

+ Efc(qS)(Vig)(¢l)D' M'],!+

and for
g(0(1)) = - 1 -1MoT ,T

we find

E[cj(Go,T(xo)) - E[C(Go,T(XO))M ,D, 0 RO,T]

, - E[C(Co,T(Xo))(VIg)DoTMO,TD l)MOI]

An application of Jensen's, Burkholder's, and Gronwall's inequalities with Norris'

result implies that all terms, except possibly MT,, are in all LP, p < oo. If now we

assume that M - } is in some LP , e.g., if we assume HI to hold, then we have the desired

result.

THEOREM 4.3. Let Co,T(xo) be the solution of (1) and c a bounded C' function with

bounded derivatives. Then if MT} is in some LP

lE[Cjo,T(xo)ll :_ K sup Ic(x)[.
xEIRd

With this result, D. Williams' 'ridiculous' example on the existence of a density for

the Brownian motion really becomes trivial:

lE[c'(wi)ll IE[c(wi) -will sup c(x) const.
zEIRd
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5. Application.

The Malliavin calculus could not have attracted so much attention if there were

not many important applications, together with the remarkable fact that it links the

H6rmander partial differential equation mcthods with probabilistic aspects. Within stochas-

tic analysis it provides many helpful tools, such as, for example, the integration by parts

formula which is equivalent to a martingale representation theorem. In filtering theory,

D. Michel and J.M. Bismut [5] used the calculus of variations to prove the existence of

densities for optimal filters, and Jacod and Bichteler [1] extended these results to diffusion

processes with jumps.

Many of these results can be simplified by using the finite dimensional calculus devel-

oped above. The full details are found in [9,10,11].

J.M. Bismut [7] (also cf. [13]) applied the results from Malliavin's calculus to the

theory of index theorems in algebraic topology and to large deviations problems [6].

Recently, there have been several attempts to develop a notion of anticipative stochas-

tic integrals. This would allow one to consider functions u(s) above which might not be

predictable and, in turn, this would then allow the development of Bismut's Malliavin

calculus to its full strength.
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Martingale Representation and Hedging Policies

David B. COLWELL
Robert J. ELLIOTT
P. Ekkehard KOPP*
Department of Statistics and Applied Probability
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The integrand, when a martingale under an equivalent measure is represented
as a stochastic integral, is determined by elementary methods in the Markov
situation. Applications to hedging portfolios in finance are described.

martingale representation * Girsanov's theorem * stochastic flow * diffusion *

hedging portfolio

1. Introduction.
In the modern theory of option pricing and hedging, the representation of martingales

as stochastic integrals plays a central role. Since the corresponding integrands immediately
lead to hedging strategies, it is of considerable interest to find explicit expressions for these
integrands.

The martingale representation result and its background is fully described in the paper
of Ocone [12], where the problem is discussed using methods of the Malliavin calculus and
weak differentiability in certain Sobolev spaces. In a recent paper by Ocone and Karatzas
[13] the representation result of [12] is applied to determine optimal portfolios and hedging
strategies.

In the Markov case elementary methods, which do not use the Malliavin calculus in
function space, are employed by Elliott and Kohlmann in [5] and [6] to determine the
integrands in certain stochastic integrals. Indeed, all that is used is the Markov property
and the It6 differentiation rule.

The present paper extends the representation result of [6] to the situation where the
martingale representation takes place with respect to an equivalent measure whose Gir-
sanov exponential is defined in terms of a Markov integrand. The motivation for the
Girsanov measure transformation is developed by Harrison, Kreps and Pliska [8], [9]. A
Markov Girsanov transform clearly introduces a new integrand in the martingale represen-
tation, and this is made explicit in Theorem 3.1. It is possible this result could be derived
as a corollary of the general result of Haussman and Ocone, see [12]. However any such
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relation is certainly not transparent and our proof, again in the Markov case, is simple and
direct.

The application of our martingale representation result to option pricing is described
in Section 4. Stock price dynamics which give explicit, closed form expressions for hedging
policies appear hard to find. However, in Section 5 we show how our result gives the hedging
policy in the well known Black-Scholes case, [1], of log-normal prices witlh constant drift
and variance.

2. Dynamics.
Suppose w = (wm,... , ) is an m-dimensional Brownian motion defined for t >_ 0 on

a probability space (SQ, .F, P). Consider the d-dimensional stochastic differential equation

dxt = f(t, xt)dt + a(t, xt)dwt (2.1)

for t > 0, where f : [0, oo) x Rd Rd and a : [0, oo) x Rd -* Rd ® Rm are measurable
functions which are three times differentiable in x, and which, together with their deriva-
tives, have linear growth in x. Write 6s,t(x) for the solution of (2.1) for t > s having initial
condition 6s,s(x) = x. Then from the results of Bismut [2] or Kunita [11] there is a set
N C Q2 of measure zero such that for w N there is a version of 6s,t(x) which is twice
differentiable in x and continuous in t and s.

Write Ds,t(x) = 06s t(x) for the Jacobian of the map x -+ 6s,t(x); then it is known

that D is the solution ofte linearized equation

dDs,t(x) = fx(t, xt)Dst(x)dt + o'x(t, xt)Ds,t(x)dwt

with initial condition Ds,s(x) = I, the d x d identity matrix. The inverse D-,l(x) exists;

see [2].

Suppose g : [0, co) x Rd Rm satisfies similar conditions to those of f and define
the (scalar) exponential Ms,t(x) by

Ms,t(x) = 1 + tM,r(x)g(r, 6s,r(x)) dwr(23
S (2.3)

1 + jg(r,

where * denotes adjoint and • inner product in Rd.
Write {Ft} for the right continuous complete family of a-fields generated by w. if, for

example, g further satisfies a linear growth condition

Ig(t,x)l < K(1 + Ixi)

a new probability measure P can be defined by putting

dPI Ft = Mot(xo).
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Girsanov's theorem then implies that i0 is an {Ft} Brownian motion under AP where

d t = dwt - g(t, O,t(xo))dt. (2.4)

Let c : Rd -+ R be a C2 function which, together with its derivatives, has linear

growth, and for 0 < t < T consider the P martingale

Nt = E[c( 0,T(XO)) I Ft].

Then from, for example, Theorem 16.22 of [4] Nt has a representation for 0 < t < T as

gt = No + 7 sdiis, (2.5)

where -y is an {Ft} predictable process such that

0T f ds < oo.

3. Martingale Representation.

THEOREM 3.1.

-it = E, dwii .g(, O,,.(x))DO,r(xO). c(60,T(XO))

+ c (6,T(xo))Do,T(O) I Ft] D-1(xO) -(t, 0,t(xo0 )).

PROOF. For 0 < t < T write x = 6ot(xo). By the semigroup property of stochastic
flows, which follows from the uniqueness of solutions of (2.1),

O,T(xO) = t,T(6O,t(xO)) z. 6t,T(X). (3.1)

Differentiating (3.1) we see

DO,T(xO) = Dt,T(x)DO,t(xO). (3.2)

Furthermore,
MO,T(xO) = Mo,t(xo)Mt,T(x). (3.3)

For y E Rd define V(t,y) = E[Mt,T(y)c(6t,T(y))], and consider the martingale

Nt= E[c(O,T(xO)) I Ft]

E[MO,T(xO)c(O,T(xO)) I Ft]

E[Mo,T(xO) I Ft]

3



= .E[Mt,T(X)c( t,T(X)) I Ft]

= E[Mt,T(x)c( t,T(x))], by the Markov property.

Then from Lemma 14.18 of [4]

Nt = V(t,x).

We noted above that t,T(x) is twice differentiable in x; the differentiability of
E[Mt,T(X)c( t,T(x))] in t can be established by writing the backward equation for
(M'It,T(X), t,T(x)) as in [11].

Under P, O,t(xo) is given by the equation

60.t(XO) = xo + j (f(s,'o,s(x O)) + a'g(s,6Os(xo)))ds

+ j cr(s, O,s(xo))ds. (3.4)

If V7(t, 6O,t(xo)) is expanded by the It6 rule we see

V(t, x)= V(t,60,t(xo)) = Nt

- O) + I (sV (xo)) + LV(s, 0 ,s(xO)))ds

+ f (s,6(,Xo))(S, 0 ,s(xo))dOs. (3.5)

Here d m "49 d a2

L + E ijj) x +aij OXixx---
i=1 .=1 2 i 'j= 9

where a(t, xi) (aij(t, xj)) is the matrix oa*. Now Nt is a special semimartingale, so the
decompositions (2.5) and (3.5) must be the same, As there is no bounded variation term
in (2.5) we see immediately, similarly to [71, that

O "
T5(s, os(xO)) + LV(s, o,(xo)) = 0

with V(T,x) = c(x). Also

as. O 3 = (,8,(xo))r(S,o,3(Xo))

: 4



However, ft,T() = ,T(xO) so, from the differentiability and linear growth of g:

ax~ ~ c(ax 4 T(Xo)) + MtT X (t)T(x))].

Again using the existence of solutions of stochastic differential equations which are
differentiable in their initial conditions, we have from (2.3)

19 Mt, _fTO t(x) Otf 9t r W
S / di*. g(r, t,r(X)) dr + dw*- g(, &t,,(x)) Mtr(x).

ax t ax t O9x
(3.6)

However, we can solve (3.6) by variation of constants and obtain

9'MtT(X) T T (3.7)
Ox Mt,T(X). g (r,r(x))D-,(x).

The result can be verified by differentiation, because (3.6) has a unique solution. Therefore,
with x = O,t(xO),

Ox = E[Mt,T(X){ T dr* . gC(r, &,r(x))Dt,r(x) c(O,T(xO))

+ c(&,T(x))Dt,T(X)}I

f T dfi42 . "(r) 4' 0r(XO))D 0,r(x0) c(40,Tp(Xo))

+ c (CO,T(xo))Doj,T(xO) Ft]Dot(xo),

and the result follows.
REMARK 3.2. The result extends immediately to functions for which a generalized It6

formula holds; this class includes convex functions and differences of two convex functions.
See Karatzas and Shreve [10].

4. Hedging Portfolios.
It is shown in Harrison and Pliska [9] that hedging policies arise from a martingale

representation under an equivalent measure. Consequently, we give an application of The-
orem 3.1 in this section.

Consider a vector of d stocks

S = (Sl... Sd),

'WRose prices are described by a system of stochastic differential equations of the form

d
dS, = S(iji(tSt)dt + >: Aij (t, S,)dw4).

j=1

I"5



Models of this kind are usual in finance. When the pi and Aij are constant we have the
familiar log-normal stock price. For economic reasons, so that the claim is attainable, see
[9], the number of sources of noise, that is the dimension of the Brownian motion w, is
taken equal to the number of stocks. At = A(t, S) = (Aij(t, S)) is, therefore, a dx d matrix.
We suppose A is non-singular, three times differentiable in S, and that A-1(t, S) and all
derivatives of A have at most linear growth in S. Writing y(t, S) = (pl(t, S),. .. ,Yd(t,S))
we also suppose y is three times differentiable in S with all derivatives having at most linear
growth in S.

We suppose the stocks pay nc dividends. However, suppose there is a bond So with

a fixed interest rate r, so SO = et The discounted stock price vector t ( 1,... , d), is

then 6t := e-tSt so

d
d =- ((p(t, ert~t) - r)dt + Z Aij(t, ertt)dwi). (4.1)

j=1

Writing O1
At = A(t, t) =

and p = (r, r, ... , r)' equation (4.1) can be written

d~t = At((y - p)dt + Atdwv). (4.2)

As in Section 2, there is a flow of diffeomorphi,--ns x -+ 6s,t(x) associated with this system,
and their non-singular Jacobians Ds,t.

In the terminology of Harrison and Pliska, [91, the return process Yt = (Yt1 , . . , Yt
is here given by

dY = (y - p)dt + Adw. (4.3)

The drift term in (4.3) can be removed by applying the Girsanov change of measure. Write
q(t, S) = A(t, S) (14t,5)- p) and define the martingale M by

Mt = 1 - i Msq(s, S)'dws.

Then

Mt= exp ( dws - -1ft irsi~s)

is the Radon-Nikodym derivative of a probability measure P. Furthermore, under P,

12t = wt + j 77(s, S)'ds is a standard Brownian motion. Consequently, under P

dYt = Atdfit

6
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and
d~t = AtAtdqit. (4.4)

Therefore, the discounted stock price process 6 is a martingale under P so P is a 'risk-
neutral' measure.

Consider a function : d -4 R, where 3b is twice differentiable and -b and Vx are of
at most linear growth in x. For some future time T > t we shall be interested in finding the
current price (i.e., current valuation at time t), of a contingent claim of the form (ST).
It is convenient to work with the discounted stock price, so we consider equivalently the
current value of

has linear growth, so we may define the square integrable P martingale N by
ANt =.ZE[0(6T) I F t], 0 < t < T.

As in Harrison and Pliska, [9], if we can express N in the form

Nt = E[0(6T)I + j00s~~
then 0 = (€1,... , od) is a hedge portfolio that generates the contingent claim. However,
we can apply Theorem 3.1 to derive immediately:

THEOREM 4.1.
gt = +J

where

= (u, erut O,u(xo))Do,u(xo)diu -¢0(60,T(xO))

+ 0b(6O,T(x))D,T(xO) IFs] Do,(xO).

PROOF. From Theorem 3.1, under measure P

Nt = E[b(6T)I + f 7 dfi

where

-YS [] 7kDo,u(xo)d9u 1k(X0,T(X0))

+ (6,T (x ))Do,T(xo) I Fs]Do1(x)A(60 ,s(x0 ))As.

Because d~t = AtAtdwt, 0(s) has the stated form.
REMARKS 4.2. Note that if q? is not a function of 6, (which is certainly the situation

in the usual log-normal case where y and A are constant), 77 is zero and the first term in
¢ vanishes.

The bond component 0 in the portfolio is given by
d

"- N - 0t6t, 0 < t < T

and Nt is the price associated with the contingent claim at time t.

7



5. Examples.
Stock price dynamics for which the hedging policy q can be evaluated in closed form

appear hard to find. However, if we consider a vector of log-normal stock prices we can
re-derive the Black-Scholes results. Suppose, therefore, that the vector of stock prices
S = (S 1 ,... , Sd) evolves according to the equations

d

j=l

where 1L = (i 1 ,. .. ,d) and A = (Aij), are constant. The discounted stock price C is then
given by (4.2).

Consider a contingent claim which consists of d European call options with expiry
dates T1 _ T2 < ... _ Td and exercise prices Cl,..., cd, respectively. Then

d d
¢(T 1,...,Td) = E ?bk( O,Tk(xo)) = Z(CTk(xO) -CkrTk)+.

k=1 k=1

The 7,k are convex functions, so applying the generalized It6 differentiation rule of [10]
Theorem 3.1 is valid as noted in Remark 3.2 with

ok = (0,.-..,0, 116~k > r-Tk0..0 )

From (5.1) we see that the Jacobian Dot is just the diagonal matrix

d
exp{E ZAlji5)t allt} 0

j==1
D0,t=

d
0... exp{ .=ldji- addtl

and its inverse is

- exp 0 elli{ ( - allt) d

d

8
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(The explicit, exponential form of the solution shows DO,t is independent of x0.) Thus,

the trading strategy qk that generates the contingent claim ?bk(6Tk) is

= E k(O,Tk (xo))Do,Tk I F s]Do,

d
-0 . ,' i OT > ck e 'k}I xp{ ZAkj (O 0

- akk(Tk - S)I I 0,...,

for 0 < s < Tk. Note that €k(s) = 0 for s > Tk, i.e., k(s) stops at Tk. However, from
(5.1),

d
kk1

60'T'(--) =Xd exp Akj - akkTk} > CkeTk
j=l i---

iff
d '
S Akjwk > log (ck) + a _ r)T = aQ, say; (5.2)

j=1 
(2

that is, iff
d d

E Aj (@Tjk 0 3s)> ak 5: Akj i~j,.
j=1 j=1

d
Now, under P, , (Akj(ii - 0) is normally distributed with mean zero, variance

j=1
akk(Tk - s), and is independent of .F8 . Therefore, the nonzero component of €k(s) is

d- expx - 1 akk(Tk - s)} exp { 2 dx

rk- ,2 2akk(Tk - /s) 2 rakk(Tk -S)
j=1

[00 d exp -[x k - k(Tk - 5)12  dx

Jk-Z Laks 2akk(T ) 27rkk(Tk - a)
j=1

0 .  . .. T- e -y 2/2 dy

-v/akkTk-s V2;:

F (ak + FAkiW[', + akk(Tk - S

akk(Tk - S)

9



A r , kj~ = g \ ads which together with (5.2) gives

log, I7 )- kkTk k- s) + Tk
,ks =C 0, ...,10 1

or, in terms of the (nondiscounted) price S k ,

log (Sc- ) - ( akk -r)(T k - s)'

Ok(s) = (0, (0,1) akk- - 10,...0 (5.3)

d
o < s < Tk. Therefore, the trading strategy q generating 4(T 1 .... , Tk) = ,kk(tT,)

k=1
can be written, with a slight abuse of notation, as O(s) = (01(s),..., d(s))', where

''k(S) = '{s Tk} g  log ( k ) - (" akk - r)(Tk - s)
OJ) fTjD C Va--k( - )- ) . (5.4)

dFinally, we calculate the price of the claim Eb[(T1,...,Td) = Z E[bk(Tk)] similarly:

k=1

d d
[Ok(%) = Z E(( - -rTk)+

k=1 k=1

d d d
1EI{ ZAk~w4 >ck}I(ZOexp{ ZAkjw 2kkTk - Tk

k=1 j=1 j=1

d (log ( S) + (akk + r)Tk

k=1 V akkT k

(-oe (l -S I (7 a- r)Tk •

(where we have used 0k - Sk k - 1 ... , d). When d 1 the above result reduces 'o the
well-known Black-Scholes formula.

10
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FILTERING FOR A LOGISTIC EQUATION

R. J. ELLIOTT
Department of Statistics and Applied Probability, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

I. INTRODUCTION

Filtering is a mathematical theory of estimating a "signal" from noisy observations. It has had
striking successes in many areas of engineering. For example, the linear Kalman filter described
in Section 2 below was derived in 1960 and is credited with a large role in the U.S. space program.
Once the theory and techniques are more widely known it is likely that filtering will have important
applications in other areas. Applications of filtering to biological problems can be found in Refs
[1-4], for example.

In Section 2 the form of the linear Kalman filter is derived. The analogous equation in the
nonlinear situation is obtained in Section 3. This equation has a quadratic term, so in Section 4
the Zakai equation for the unnormalized density is established. Finally, in Section 5, a logistic
equation with some noise is discussed. Using a technique of Kunita [51, it is shown how the
unnormalized conditional estimate can be expressed without using stochastic integrals with respect
to the observation process. Fuller details of the ideas described can be found in Refs [6, 7].

2. THE KALMAN FILTER

The basic idea of the model is that there is a signal process {x,}, which cannot be observed
directly, and a related observation process {Yt}. The object is to obtain the "best estimate" of x,,
given the history of 3y up to time t. To illustrate the ideas we first discuss the linear Kalman filter.
For simplicity the processes will be one-dimensional.

Suppose the signal process is given by the following linear stochastic differential equation:

dx, = Ax, dt + C dW,,

where W, is a Brownian motion. Then

x,= xo+ Ax, ds + CW,.

The observation process will be assumed to be of the form

dy, = Hx, dt + dB,,

where B, is a second Brownian motion independent of W. Assume x0 - N(0, Po) and Yo = 0.
The filtering problem is to calculate a recursive expression for the "best estimate" of x,, given

{y:S < t}.
Write Y, = a{y,: s < t} for the a-field generated by y, up to time t and

= E[x, IY,].

Then i, is the "best estimate" in the sense that it minimizes E(x, - z)l over all Y-measurable,
square integrable random variables z.

Calculating , , is a Hilbert space projection problem. Suppose ((i, F, P) is the probability space
on which our random variables are defined. Consider L'(0), the space of square integrable random
variables of zero mean. For ,X, Y c L0(91), the inner product is just E(XY).

- ' -'X ,=---==-=-=- - -



4 R. J. ELUOTr

The process v has the following properties:

(i) v, is a Y, Brownian motion, i.e. v, is a Y,-martingale and (v>, = t, where <v> is the
unique predictable process such that v2 - <v> is a martingale.

(ii) All Y,-martingales are stochastic integrals with respect to v,, i.e. if M, is a Y-martin-
gale, then there is a process g, which is Y,-predictable and

A = fogs dv,.

Suppose the signal process is an F,-semimartingale , given by

, = o + fo a, ds + ,

Here o is an F-adapted process such that

E c' ds <co,
"o

o is an Fo-measurable random variable with E ' < oc, and r/, is a square integrable F,-martingale.
There is a unique predictable process <ij, B> such that l, B, - <q, B>, is a martingale. We shall
suppose this is of the form

<r/, B>, = fo fs s
Qz~BX~fds.

Theorem 1. Write 4, = E[b,/Y ,]for the filtered estimate of ,, given Y,. Then

+( ,h(x) - ef(x,) +l) dv,

Proof. Write

i=Cc-o - d, ds.

Then it is easy to check that y is a Y,-martingale. Consequently, by property (ii) above there is
a process g,, such that

P1 = gs dvs.

Again we wish to determine g. To do this recall

= 4o + { 3,ds + {gdv, (2)

Y,= h( )ds + B, (3)

and

Y, = J J( ) ds + v,. (4)

From equations (1) and (3), using the Ito rule:

S= ,[h (c) ds + dB] + y,(a, ds + d,) + ds.



Filtering for a logistic equation 5

Conditioning each side on Y,, we see that

E[ ,y, I Y= y, , [ h( j)+yd+ #jds +NI, (5)

where N' is a Y,-martingale. However, from equations (2) and (4), using the Ito rule:

= + yc,3 + gj ds + N,, (6)
0

where N, is a Y,-martingale. The decompositions of y , in equations (5) and (6) must be the same,
so

and
h ( ) + j, d + s h-- $( ,) + Y 6 + g,.

This gives g, = tzh( ) - / ( ) + #, and the result follows. End of proof.
Suppose that x, is the solution of the stochastic differential equation

dx, =f(t, x,) dt + 6(x,) div,.

That is,

x, = Xo + {f(s. x.) ds + Jo a (x,) dw.

If F is a C2 function, the Ito differential rule tells us that

F(x,) = F(xo) + J F,(xs)f(s, x,) ds

+ F,(x,)a(x,) div + ' F (x,)U(x5 )2 ds. (7)

Let us use the notation
H,(F) = ELf(x,) ,,.

Then rI, can be thought of as the conditional distribution of x,, given Y,, so that

n,(F) = f F(x)Fi,(dx).

Suppose it is independent of the observation noise B. Applying Theorem I to the semimartingale
F(x,) gives

,It(F) n0(F) + n ,I,(FF) ds + [l(Fh) - 1-1,(F)Il3 (h)] dv,. (8)

Here,

FF(x) =f(s, x)F,(x) + !r(x) 2Fx,(x).

4 - This equation gives an infinite dimensional recursive equation for the filtered estimate I,(F).
If we consider the case f(s, x) = A, a(x,) = C, F(x) = x and h(x) = Hz, equation (8) reduces to

the Kalman filter derived in Section 2.

-- -s 
oJ7 
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6 R. J. ELLIOTT

4. THE UNNORMALIZED FILTERING EQUATION

There are two difficulties with equation (8). Firstly, it is in some sense quadratic in H and,
secondly, it is driven by the innovations process v. Suppose we are considering processes defined
on [0, T]. Define a new probability measure P0 on (0, F) by

dP 0 _ [T1 1dPexpL- h (x,) dB,-- l 2(x)ds.

If h is of linear growth, say III(x)l < K(l + Ixi), then P0 is a probability measure and under P0 , Y,is actually a Brownian motion. This is a result of Girsanov's theorem [6, Theorem 13.14]. Write
E0 for expectation with respect to P0 and

A, = exp h (x,) dy,, - - fh2(X) ds .

Then, using a Baye's type theorem,

fI, (F) = E[F(x,)YI,

_ Eo[A,F(x,)IY,I

EO[A,IY,]
at(F)a,(l) say,

where a,(F)= Eo[A,F(x,)IY,] is an unnormalized conditional distribution of F(x,).
We first obtain a semimartingale expression for a,(1). Using the Ito differentiation rule:

dA, = h(x,)A, dy,.

That is,

A,= I +f h(x,)A, dv, (9)
so A, is a (F, Po)-martingale. Consequently, A, = Eo[A,Y,] is a Y,-martingale so there is some

Y,-predictable process y,, such that

A, = I + f, dy. (10)

To determine y, consider, using equation (9),

yAt = 'A, dy, + fy 3I(x,)A dy, + A, h(x,) ds.

Conditioning on Y, under measure P0, we have

Eo[y,A,jYj =y, = [ Ah(x,) ds + Me!, (i)
.IV

where M' is a (Y, Po)-martingale. However, using equation (10),

yA={ y y, dy, +f A, dy,+ jyds

fj = ds + M,. (12)

;7
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Again, the decompositions (11) and (12) must be the same, so

M) = M2

and

= Ah(x,) = Eo[Ah(x,)IY,].

Using Baye's rule again, we see that

= AlI(h(x,)).

Therefore,

A,= + f ArI,(h(x,)) dy,. (13)

(Note-denotes conditioning under measure P0 , while 17 denotes conditioning under the original
measure P.) Now equation (13) has the unique solution

aexp , (h) dy, - -I n(h)ds]

Recall a,(F) = a,()fI,(F). Forming the product of equations (8) and (13) therefore, and using the
Ito rule, we have the following result:

Theorem 2. a, (F) satisfies the "Zakai equation",

a, (F) = ao(F) + fl a,(FF) ds + fo a,(hF) dy,, (14)

with initial condition

a0(F) = n0 (F) = E[F(xo)].

This equation is linear in a and is diiven by the observation process y. There is a one-to-one
correspondence between solutions of the Zakai equation and solutions of the nonlinear filtering
equation (8): whenever o,(F) satisfies equation (14), then a,(F)/a,(1) satisfies equation (8), and
whenever fl,(F) satisfies equation (8),

rIt(F)exp[f 1 H.(h) dy, - r { l(h)2 ds]

satisfies equation (13).

5. EXAMPLE

Suppose the state of the system under investigation is described by the following logistic-type

equation:

dN, = AN,(l - aN,) dt + c dw,.

That is, N satisfies the usual logistic-type equation with a small amount of noise represented by
c dw.

The observation process will be of the form

dy, =kN, dt + dB,.
'a



8 R. J. ELLIOTT

Again, if noise were not present in the observation process we would have

N, k _1 dy,

so that N, could be determined from the rate of growth of the observation process. Write
1, (N) = E[NIj Yj, so the innovations process is

1= Y' - IkrI(N) ds.

Suppose the observation noise B and state, or signal, noise it are independent. Then equation (8)
for the filtered estimate [1,(N) gives

rI,(N,) = 110(ND) + 171 ()5 .N, (I - ciN,)) ds + k (rl,(NI) - rI,(N,)2) dvi.

Equation (13) for the unnormalized filtered estimate a,(N) gives

a, (N,) = f10(No) + { o(.N,(1 -caN.,)) ds + k Ja(P." Idys

Again consider a C' function F so that, using the Ito rule,

F(N,) = F(N0 ) + j', A F(NS) ds + c {o FN(NS) dit',

Here,

AF(N5) = ).N5 I - caN 3)Fv(N,) + CFvv(Nj)

Therefore, equation (8) gives

II, (F) = I'l.(F) + {o fl,(AF) ds + k {o [nH5(N.,F(Ns))- 1715N)fl(F(N)] dv,.

if n, is given by a conditional density P,. then

n1,(F) = .fR xp(txyd.

Consequently, Pl is given by the equation

0 ,Y 0 ,Y o Ps ,y s+kfp(,x )( .

Here,

A*,b )x I- xo(x)] + - ax2

is the adjoint of A. This equation is not linear in Pl because

However, if we consider the related unrormalized conditional density q, given by

q (1, x) = f(1, x),

then

c7,(F) = R F(x)qQ, x) ds.
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Furthermore, q is given by the linear equation

q(t,x)=fl(O, x,y)+Jo A*q(s,x)ds +k fxq(sx)dy,

which has y as input.
Finally, let us consider again the Zakai cquation for or,(F):

a, = ao(F) + a, (AF) ds + k r a (NF(N)) d'.
fo, Jo

In terms of Stratonovich integrals this is

a,(F) = o0(F) + J o,(AF(N) _ k N2F(N3 )) ds + k fao(N'F(N,)) dys.

Consider the following operators defined oil functions F(N):

L(t)F(N) = AF(N) - k N 2F(N)OF c2 02F

=).No - aN)-W +--2F kN 2F(N),
N -TN 2,

t, F(N) = F(N)exp(Ny',)

and
1p F(N) = F(N)exp(-Ny,,).

Writing A(N) for 2N(I - aN), see that

[pLI ~ C ']() 2F 0 F -k 1
[ti,L(t)p,,']F(N) = + [A(N,) - N+ 2p - A(N,). N 2 F(N),

so PL(t)t ,-' is a second-order operator.
If we consider !7, as the solution of the system

N, = No + f [A(R,) - ds + c',

and consider the expectation, given Y,, of

F(J)expf [2jLt2 - A(U,)y - k R2 ds

we have, writing

v()= E(F(R,)exp{[(2 A(R,)y, __ k A ds} 1)
that

v,(F) = vo(F)+ f v, (jL(s)p;')F(N,)ds.

If we now calculate v(pF), we have

v,(p, F) = vo(F) + f v. (p, L(s)p ;)(pF) ds + k fJ vs (p,((N,F(N,))) o dys.

That is, the solution of the Zakai equation is given by

vj,(pF) =E(exp(ARiyDF(N:)exp{jf'[ i - A(FM)y,,-~ i? ds} 1 )0.

MCM I"3/6-
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The advantage of this expression is that it involves no stochastic integrals. The observation
trajectory y appears just as a parameter. Also, the operator U,L(t)qp7' differs from L(t) only by
terms of less than second order. For details of the method in this section see Ref. [5].
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Integration by Parts for Poisson Processes

1. Introduction.

In his paper [3] on the Mal"liavin Calculus Bismut obtains an integration by parts

formi 'a for a diffusion by considering a small perturbation of the trajectories and then

cornpensa.ing for this by using a Girsanov change of measure. That is, suppose denotes

the original trajectory and the perturbation. Let E (resp. E') denote expectation with

respect to the original measure (resp. the measure after the Girsanov transformation).

Then for any bounded, differentiable function c, it is the case that

E[c( )] = E'[c()]. (1.1)

The left side of this equation is independent of - and Bismut obtains his integration by

parts formula by differentiating in c and putting - = 0. Integration by parts formulae

for Markov jump processes have been obtained by Bass and Cranston [1], and Bichteler,

Gravereaux and Jacod [2]. Again, the variation of the trajectories considered by these

authors consists of perturbing the size of the jumps.

A Poisson process is a counting process, and all jumps are of unit size. Consequently,

a perturbation of the trajectories of the kind considered in [1] and [2] does not make

sense. Instead we consider below a Girsanov change of measure which alters the rate of

the Poisson process by a small amount. This is then compensated by considering a time

change of the process under the new measure. An identity analogous to (1.1) is obtained

and the integration by parts formula follows by differentiating with respect to a parameter

e and putting e " 0. The case where the function depends only on finitely many jumps is

1



discussed first, and the general case, for a functional of the Poisson process over the time

interval [0, 11, is then deduced.

There is a close relation between integration by parts formulae and martingale repre-

sentation results. It is well known that any uniformly integrable martingale on the sigma

fields generated by a Poisson process can be represented as a stochastic integral with re-

spect to the associated martingale. The integrand can be obtained by considering one

jump at a time (though the precise form given in equation (2.6) does not appear to be

in the literature). What is interesting is that the integration by parts method gives an

alternative expression for this integrand, which does involve a derivative of the functional

of the process. The equality of these two expressions is verified in the appendix when

the functional depends on finitely many jump times. This expression for the integrand is

similar to that obtained by Clark [5] for functionals of Brownian motion.

2. Martingale Representation and Time Change.

Let N be a Poisson process on ( ,.', (.rt), .P) with jump times T 1, T ...... We

shall write To = 0. Let G(T1,...,T,,...) be an integrable function of T 1 ,...,T,.

Consider the martingale M defined by:

Mt := E[G(T,,... , T,,,.. t)]. (2.1)

For n > 1, write

e"- (T) = MT. - MT.

= E[G I YTI - EIG I (2.2)

2



From Theorem T9, Chapter 3 of [4), the martingale M defined by (2.1) has the

representation:

Mt = E[G] + godQ, (2.3)

where Qt = Nt - t,

98 = g"(s)

= fi(s - T) - e" 1 fi(u)e- 'du (2.4)

on {Tj _< s < T+i}, and

fi(s) =--E[MT,+ I T,,... ,Ti, Ti+j - T, ]

Since .'T = a{T1,... ,T}, T+j - Ti is independent of T1,...,Ti, and exponentially

distributed, so

E[ITi+ >.}MT,+ I .T=T, -- I=,+T,>jE[M IT 1,... ,Ti, Ti+i - T= = ue-udu

=._./To)v f'(u)e- u d u "  (2.5)

From (2.4) and (2.5), we have

g'(s) = E[G jTl,...,Ti, T1+1 = s- e'-TE[IT.+ >IG I .Tj. (2.6)

From (2.5)

MT= E[MT , I .+ITi

= fof(u)e-udu" (2.7)

3



Also, . can be written as

Vi(s) = fP(s - T) - MT,. (2.8)

Using (2.4), (2.7) and (2.8), we have

gi(s) = ei(s) ± j ei(u)e'Udu. (2.9)

Throughout the rest of this paper we let {ut, t > 0) be a real predictable process

satisfying:

(i) {u,, t > 01 is positive and a.s. bounded, Jut I _< B a.s. say.

(ii) There exists a bounded interval, say, [0, b), such that u,(w) =0 if s [0, b], a.s.

For - > 0, consider the martingale:

Xt := eudQ$

= eu AN,- jeuds. (2.10)
0<s<t

Define the family of exponentials

A' exp(X, - (Xc, Xc)) II (1+ AX,)Ax.
o<a<t

Oat

(I +I( euLN.Naexp(f-juds) (2.11)o<8<t

Then {A', t > 01 satisfies the equation:

A' 1 + A /
1jA _dX,

1 + A 8CU'dQ 8  (2.12)

and {At, t > 0) is a martingale. (See [61.)

4



LEMMA 2.1. {A , t _ } is a uniformly integrable martingale. Hence A" exists and a

new probability measure P" can be defined by

dPC Ao
dp

Proof. It suffices to show that the martingale {A', t > O} is square integrable.

Recall u vanishes outside the interval [0, b] and u, I < B a.s. By (2.12) and It6's rule,

(Ae)' = 1 + 2 A _dA + (A

=1+ 2jAe_dA + (A,_-)262 u~dQs + (A_)2 e2uds.

For 0 < t < b5

E[(A = 1 + E[(A._) 2 u ]ds

< 1 + O2B2  E[(Ac) 2Ids.

So by Gronwall's inequality,

E[(A') 2 __ exp(6 2B2 t)

< exp(e2 B 2b) 0 < t < b.

A' is contant for t > b. Hence the martingale {A', t > 0} is square integrable.

A' > 0 a.s. and E[A, = I Iso we can define a new probability measure P' by putting

dPC A'ro
dP

5



Then the process {Q'} defined by

NQC : t-f(1 + eu,)ds

is an (.Ft) martingale under P- (see [7]).

Now define

k,(t) := (1 +eu,,)ds. (2.13)

Let 0,(t) = q[ 1(t). Then t, (0, (t)) = t so

= f1 + 1, ds. (2.14)

If we let F' = " then from Theorem T16, Chapter II of [4], the process {Nt, t >

0} defined by:

Nt" N ,(j) (2.15)

is a Poisson process on (2, .F, (Pt), P').

3. Integration by Parts.

Suppose G is a function of the first n jump times T 1,..., T, of a Poisson process N.

Since 0,(t) = ¢b7(t), if Tj is the i-th jump time of {Nj}, then 0,(Ti) is the i-th jump time of

the process {N, (t) }. Changing the rate of the point process by a Girsanov transformation,

and then changing 'he time scale of the process, we have the following result:

THEOREM 3.1. Let G(T 1,... ,T,) be bounded with bounded first partial derivatives.

Then

E[(ju~dQ)G(T,.,Tn)] E[z G(T...,Tn)f U~ds(3.1)
0 ~i= 10(31

6



Proof. By the results in Section 2, because Np,(1) is a Poisson process under P" with

jump times 0,(Ti); consequently

E[G(T1, . . . ,T)]= E[G((Ti),...

= [ G (Ti,.,(T.))] (3.2)

where E'[ I denotes that expectation is taken with respect to P'. Differentiating (3.2)

with respect to c, and then setting e = 0, we get:
E d

E[A' ,=.

± E d(+ A--) G(q().(,,o 0. (3.3)

From (2.12) and the definition of A1,

dA% I0 Q.

de 14=o J o .

Noting the definition of 0, (3.3) becomes (3.1) and the proof is complete. E

Remark 3.2. Consider a function H of the form H(Ti A 1,..., T, A 1) where H is

bounded and has bounded first derivatives. Applying Theorem 3.1 to G(T 1 ,..., T,) =

H(T A 1,..., T, A 1) and noting that

Ot- G(Ti,..TO)= H(TI A 1,. .. ,ITn A 1)ITI:5,

we have the following:

COROLLARY 3.3. If H(TI A 1,...,Tn A 1) is bounded and has bounded fist derivatives,

then

= EZ--H(T, A 11...IIIAl1)j U'dsITi.<1]. (3.4)
i=l

7



Remark 3.4. Recall the martingale representation (2.3) and (2.4), or

Tn
G(T 1,. . ) = E[G + j gdQ,, (3.5)

where

go = g'-l(s) for Ti-1 < s < T,.

If we substitute (3.5) into the left hand side of (3.1), we get

E f0 ~d, Tn gdQ.)] = f~ E [ ~fo IT ag
E[j ~d.)(EfCI + / 0 uE~s u~g.,ds (3.6)

where go = 0 for s > T.

Also, if we consider the measure p defined by

p~dt = 5~j.G(Ti,..., T1n)8T (dt).
i--1

Then the right hand side of (3.1) can be written

i=1

- E , -(T,..,T)uds1. (3.7)
-E[j 0 01(usI> t

L-E 1100 pEs OG • •

Let = IT,> ".(Tl,.. . ,T,). Then there exists a predictabe projjcctioi C*

of C, such that for each s,

C:= EC, J1,-] a.s.

7 7



Also for any predictable process {U, S > 0},

E[uC.] = E[u.E[C. 1 F._]]

= E[u.C:]. (3.8)

Let 7- be the family of subsets of [0, oo) x Q of the form {0} x F and (s, tJ x F, where

F0 E Fo and F E F. for s < t. Recall that the predictable a-field is generated by 7X1.

Taking u = I{0}Fo or u = I(,,tlxF, then u satisfies the hypothesis in Section 2, so (3.6),

(3.7) and (3.8) hold for these u. Also because of (3.8), on comparing (3.6) and (3.7), we

have

E[j ugds] 00Ej.~~s

holds for all u which are indicators of sets in 7W. Since .H generates the predictable a-field

and the processes g and C" are predictable, therefore we have proved the following result:

PROPOSITION 3.5.

S= -Z I,>.-(T
1,.... 8TG)I - a.s. (3.9)

i=1 
I

Now suppose H(T A 1,... , T, A 1) is bounded with bounded first partial derivatives.

From Section 2, H has the representation:

H(T A 1,... ,Tn A 1) = E[H] + g,odQ, (3.10)

where go = g'-1 (s) for Ti-I A 1 < s < Tj A 1.

An argument similar to the above shows that

g= -E I.<Tr<T1-5 ,(T ... ,T, A 1) I .,-] a.s. (3.11)

4- 9



The form of g given in Section 2 and that given in (3.9) are at first sight rather different.

A direct proof of their equality is sketched in the Appendix. Next we have the following

integration by parts formula:

THEOREM 3.6. Suppose G = G(T A 1T..., T, A 1,... ) is a bounded function and its first

partial derivatives are all bounded by a constant K > 0. Then

E[(i udQ) G(T A1,.Tn A1,...0
= - E[E L G(Ti A l,...,Tn A 1,...)j UdsIT.j]. (3.12)

i=,

Proof. First note that for each M > 0, the partial sum

M M

E E[IT< 1 - ZP(TI > i) < 4e'
i=1 --

so that by hypothesis, the right hand side of (3.12) is finite. For each n > 1, define

H"(T ,... ,Tn) := E[G(Tj A I,-., T, A 1,.. ) FT.

Then

Hn(T,.,T) = E[G(T A 1,...T, A 1, (T, + S, +,) A 1, ... ,I

(Tn + Sn+I +...- + Sn+i) A 1,...) I-.]

-- ES[G(TI A 1,. T A 1, (T,. + S,,+,) A 1, ... ,I

(Tn + Sn+I + + Sn+i) A 1,... )], (3.13)

10



where Sk = Tk - T k-l for k > 1, and the last expectation Es in (3.13) is taken only over

the random variables Sn+I,. ., S,+i,..., and the T1,..., T. are given. From (3.1),

E OudQ, H"n(T1,.. TO E...TI -, n Tiusds]

Kr O" T0

U.E [ n ,( 3 . 1 4 )

And from (3.13),

aH-"-' (T,,, ,T)= ES [--G(T A 1,.. T. A1, (T. + Sn+j) A I...

CO

i=n &

i=n

Hence

= E[f U,ds E -(TI A 1,...,Tn A 1,...). ,__., -ITo

--+0 as n --* 00 (3.15)

by the hypotheses on {u.} and G.

Also for 1 < i < n - 1,

Ealln Ti

= E G(Tj A 1.,Tn A 1.... ) ,,dsI, _5. (3.16)
Tt 11



Letting n - oo in (3.14), because of (3.15) and (3.16), we obtain (3.12). 0

We conclude with the following theorem:

THEOREM 3.7. Suppose M is the right continuous martingale

M, =E[G(T, AI....T,^AI...', .

Then

Mt= E[G] + f0 g dQ.,

wbere
gT =.. -E I, Tj-j (3.17)
-EZ, <,<'i-(Ti A, T A 1,. F-] a.s.

Proof. The proof is similar to the one for Proposition 3.5.

4. Appendix.

We now give a direct proof that the integrands g obtained in sections 2 and 3 are

equal.

The idea is to first establish the equivalence on {t < T1 I and then to use this to

establish the equivalence on {Ti- 1 < t < TjI for i > 1 without any more calculation. First

we need a preparatory lemma. Given a bounded measurable function R(xl,..., x,) define

F(i) (Vi,...,)Yn; Xl,...,Xi-l)"- (x~l,...,iXi-1, Yi +-Xi-1,..., Yn +c xi-1).

Notice for later use that

F F() for j > i. (4.1)
8y - R/Oyij

Finally, for i fixed, let T = Tj - T i-1 for j >_ i and notice that ... ,T,) has the same

probability distribution as (Ti,...,T,-i+,).

12



LEMMA 4.1. If(T1 ,.. .,T) are the successi ve jump times of a Poisson process, then

(a)

E[R(T1 ,.. .,T,)Ij-T,_] = E[F f (Ti,...(,,; x1 ,...,

(b)

E[R(T,,...,Tn) I Ti ,...,T,-1, T = t)

R E F )(Ti,,...,7Tn; X ,.,1) - Xi-I T t- Xi- I ](z , ,,_) (TI,..., T,_1)

(c)

E [IR (T i,...,T,) I -F]1 1(T,_ t < T)

= l(Ti,,<<ri)Z[F ( T,,....,)Tn; X ,... - ) TX > t -X i- l ,..,:_)(TI,..., ,T,_)

The proof of this lemma is elementary and relies mainly on the independence of

(n) from T1,...,Ti- 1 , and the equality .F, n {T_ 5 <t <Ti} =FT, nf{TI <_t <

Til;see (4], Chapter 3, Section 1.

Now we are ready for the proof. Note first that F = Y', since the sigma algebras

are complete.

Step 1 We show equivalence on {T > t}. A direct calculation and an integration

by parts shows that

1{T>t}(E[G(TI,.. . ,T,) I T, = t] - etE[l{rTit}G(Tl,. . . T,)]

=1{T>ilE[Z (TI,...Tn) I> t].-

13



By part (c) of the lemma and by using the facts that l{T1 >t} is Ft measurable and that

l{T>t)l{T,_t) = l{T,>t} almost sure forj _ 1, we find that this last expression equals

1({T> )E [Z T 9G W (T . , 1) IF

This completes Step 1.

Step 2. We prove the equivalence on {Tj- 1 < t < Ti}. First use (a) and (b) of the

Lemma to show that
1 f ,_,___,<T,} (E[G(Ti I...,ITO, I TI,..Ti-,, T, = tl- et-T4-'Eil (,>t) G I F r,_,)

= {,,tl t _}(E[FD(,..T , iTn, -T ..... ,Ti-,) I Ti = t - Xi-11

-'- ,-,E { ') (Ti -, , n; X1,..., 7 ,_ )X)I- , ,.,, , = ,.. = _
(4.2)

Now apply Step 1 at each (x,... , xi-1) with the random vector (T,..., T) replaced by

(T,...,Tn), and G(T,,...,Tn) replaced by FG( )( ,...,Tn; ,..,-)nd(,..,-)

fixed but arbitrary. Using (4.1), we find in this way that the expression in (4.2) is equal to

n

But from part (c) of the Lemma, this equals

"T nG T . .O,]

j=i

,, - OG

.jI .- ,<,t<T}"C [Z_., -'--_,<t<T} {Tj>,}) -(*T,,..., T,) I ',

j=14

14



The last three equalities are all elementary. This completes the proof.
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Abstract. Using a differentiation result of Blagovescenskii and Freidlin
calculations of Bensoussan are simplified and the adjoint process identified
in a stochastic control problem in which the control enters both the drift
and diffusion coefficients. A martingale representation result of Elliott and
Kohlmann is then used to obtain the integrand in a stochastic integral, and
explicit forward and backward equations satisfied by the adjoint process are
derived.

1. Introduction

The adjoint process in stochastic control problems has been investigated in several
papers. For example, see the works of Bismut [4], [5], Davis and Varaiya [7],
Haussmann, [13]-[15], Kushner [16], and the previous papers by Baras et al. [1],
and Elliottand Kohlman [11], [12]. In most of these papers the control variable
enters only the drift term. However, in an interesting paper [2], Bensoussan
considers the case where the control is also present in the diffusion coefficient. By
obtaining the Gateaux derivative of the cost function the equation satisfied by the
adjoint process is derived. However, a martingale representation result is used and
this equation involves an unknown integrand. The contributions of this paper are
that, by using results of Blagovesceuskii and Freidlin [3] on the differentiability of
solutions of stochastic differential equations that depend on a parameter, the

* This research was partially supported by NSERC under Grant A7964, the U.S. Air I-orce thice
of Scientific Research under Contract AFOSR-86-0332, and the U.S. Army Research Office under
Contract DAAL03-87-K-0102.
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calculations of Bensoussan can be simplified, and, by applying the expressions
obtained by Elliott and Kohlmann in [9] and [10] for the integrand in a stochastic
integral, explicit forward and backward equations for the adjoint process are
obtained when the optimal control is Markov. In particular, the backward
equation is a nonstochastic system of parabolic partial differential equations of a
novel form, though it is probably related to the equation obtained in the recent
paper by Davis and Spathopoulos [6].

2. Stochastic Dynamics

Assume the state of the system is described by the following equation:

dx, = f(t, xt, u) dt + g(t, x,, u) dw,, x, e R', 0 < < _T (2.1)

The control variable u will take values in a compact, convex subset U of some
Euclidean space Rk. We assume:

Al. xo e R d is given.

A2. f: [0, T] x Rd x U -4 Rd is coninuous, and continuously differentiable with
respect to x, u.

A3. g: [0, T] x Rd x U d- Rd® R" is a continuous matrix-valued function, which
is :ntinuously differentiable with respect to x, u. The columns of g are denoted by
g(k) for k = , ... n.

A4. There is a constant K such that

(1 + IxI)" '(f(t, x, u)l + If(t. x, j) ± If(t, x, u)l I__. K,

Ig(t, x, u)I + Ig, (t, x, u)I + Ig,(t,x, u)I < K.

A5. w = (w'..., w") is an n-dimensional Brownian motion on a probability
space (Q, F. P).

The right continuous, complete filtration generated by w is denoted by {F,},
0<t T

Notation 2.1. Write L2[0, T] = v= v(t, w) e L2(p X [0, T]; dP x dt; Rk): such
that, for a.e. t, v(t, .) e L2 (2, F,; P, Rk)}.

Definition 2.2. The set of admissible controls is the set

U {v L 2[0, T]: v() e U a.e. a.s.}.

Then U is a closed, covex subset of L'[0, T].

_
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Remark 2.3. For each u e U there is, therefore, a unique strong solution of (2.1).
We write x.,(x) if x e Rd, 0 < s < < T, for the solution trajectory given by

x".,(x) = x + f(r, x" ,(x), u,) dr + g(r, x .,(x), u,) dwr. (2.2)

Because u,(w) depends only on t and w, the result of Blagovenscenskii and
Freidlin [3] extends to this situation, so the Jacobian ax. ,(x)/8x = D' , exists and
is the solution of

O", = I + fx(r, xu.,(x), u,)D., dr + '[ g')(r, x .,(x), u,)D., dwv'. (2.3)

Here I is the d x d identity matrix. In fact, if the coefficients f and g are Ck the map
x - x. (x) is Ck I

Consider the matrix process H defined by

/n
Hu I - Hu. fx(r, x'.(x), Ur) - g 0(r x,,(x), dr

S.f Js. S. I gUrXS"( )2)
k=1

- , 1 I gx)(r, xu,(x), u,)div. (2.4)
k=l

Using the Ito rule we see d(Hu',D',,) = 0, and HIID, = I so
H. = (Du,,)-'.

Write IIx"(Xo), = supo ,,slxuo.,(xo)f. Then, as in Lemma 2.1 of [15], for any
p, I _< p < co, using Gronwall's and Jensen's inequalities

1 'xU(Xo)• < C I + X0 IP + g(r, xu.r(Xo), u,) dw P

a.s. for some constant C. Therefore, using Burkholder's inequality and hypothesis
A4,

IIx(xo)I 1r is in L P  for I <p < .

Write

1ID"IT = sup IDJ.SI,

iHlIT = sup Ho. .

Burkholder's inequalities again implies

1 D" 11Tand 1]H 11T are inL P, 1 <p< o.



Co2.42 We assume there is a cost associated with the process, mad:u Elotta

temnlcost and a running cost,

C (XO X)) + fTh(r, x' ,(xo), u.) dr.

Weassume:

A6. Ic(x)l -. Icx + icxx(x)I ! K(1 + jxq for some q < 0o.

A7. h:: [0, T] x R d X U --+ R is Borel measurable and continuously differentiable

in (x, it).

Furthermore

I(t, X, U)1 CIOl + 1xj),

Ih.(t, x, u)l C2(0 + 1XI).

The expected cost if a control u e U is used is, therefore,

J(u) = EIC(X"O.T(XO)) + o h(r, xojrxo), u,) dr]

We assume there is an optimal control u* e U, so that

J(u*):E J(u)

for all other ui e U.

Notation 2.5. We write x* for XU*, D* , for Du*,, etc.

3. Differentiability

Assume u*' e U is an optimal control, Consider any other control v e U. Then for

0 C-j0, 1]

u0(t) =u*(,) + O(V(t) - u*(t)) G- U.

Now

J(11) J(u*). (3.1)

If the Gateaux derivative J'(u*) of J, as a functional on the Hilbert space L~F20, T],

is well defined, differentiating (3.1) in 0 implies

for all v e U.
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Lemma 3.1. Assume v c- U is such that u* = u* + Ov cz U for 0Gc [0, a]. Write

xg ,(x0) for the trajectory associated with 4* Then z, = ax', ,(xo)IO = 0 exists a.s.
and is the unique solution of the equation

Z'= f(fx(r, x*.,(x0 ), u*')z, + f.(r, A .(xo), u*)v,) dr

+ f_ (g"'(r, x* (xo), u*')zr + g"I(r, x*.,(x0 ), u*)vr) dw,. (3.2)

Proof.

x' ,(x0) xo + ff(r, x8 r(xo), u* + 0,.) dr

+ fg(l)(r, xo.,(x0 ), u* + GOV) dw'

and the result follows from the theorem of Blagovescenskii and Freidlin [3] on the
differentiability of solutions of stochastic partial differential equations which
depend on a parameter. El

Comparing (3.2) for z and (2.3) for D*,, = Ox*,/ax, we have the following
result by variation of constants:

Lemma 3.2. Write

tUo.t f (Do*.rf'fv(r)Vr dr + J(D* ry-tg('(r)vr. dw'

- f(*O, lg()(r)g(')(r)v, dr. (3.3)

Then z, = D* ,0 no,

Proof By differentiating, we see the product Do*5i10, satisfies (3.2). E

Lemma 3.3.
d.I(u o90= E[c (x *,T(xo))DOT, o ~( 

0 ) 4)r

+ [T(hx(r, x*,,(x 0 ), u*')D*, ,io r + h7(r, xxo t*v)dr]

(3.4)

Praff

J(u0*) E 44c0x T (XO)) + "h(r, xo.,(xo), u*(r)) dr]
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The result of Lemma 3.1 and [3] justifies the differentiation in 0 giving

dJ(uo')j T
dO 'X- , (XO))ZT + T(hx(r, Au*')z,, + h~(r, A '., u*')v,)

1 0 0 0T -o O.rF'

Substituting z, = D ,?10 ,, (3.4) follows. C
Notation 3.4. Consider the right continuous version of the square integrable

martingale

M': = E[c,(X. T(xo))Do*.T + {0 T h,(r, x. ,(xo), ,)D* , dr IF,.

It is known (see, for example, [8]) that M, has a representation as a stochastic
integral

M, = E[c,(X ,T(Xo))DT + h.(r)D* , dr + fy div, (3.5)

where the y' are predictable processes such that

We determine the y' below, but first we introduce some more notation. Write

=M, - hx(r)D*., dr.

Definition 3.5. The adjoint variable is the process defined by

p = F(D* ,)-

Theorem 3.6.

[L T  "SdO o -
"  d+ r

+ fo (D o 'g("(s)v, ds] (3.6)

Proof. First note that

T io0. r fT ¢(Oo,) f(s)v, ds

+ E .,(o- g (')v., di - fT (D*.) - g)(s)g1 )(s)v ds
i-=1 foVi=1 f '

+ y ' qo., dw - h,(s)D*.,qo., ds
i=1 

0

+ v,(DOo.)-' g("(s)v, ds. (3.7)
i=1 0
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Also

' 10=o = E[TO.'1 + h.(s)D*,.i1o., ds + hv(s)v, ds. (3.8)

3ubstituting (3.7) in (3.8) and using the definition of p,, the result follows. 0

1. Martingale Representation

Under certain conditions the minimum cost attainable under the stochastic open-
oop controls is equal to the minimum cost attainable under Markov feedback
-ontrols of the form u(s, 5 .,(xo)). See, for example, [4] and [13]. If um is a Markov
;ontrol, with a corresponding, possibly weak, solution trajectoiy U, then uM can
:e considered as a stochastic open-loop control it, (co) by setting

,lm(w) = u 1 (s,' Xo, W)).

rhis means the control in effect "follows" its original trajectory Um rather than any
new trajectory. The control u?, is, therefore, similar to the adjoint strategies
ntroduced by Krylov. The pint of considering the open-loop control uM is that
,vhen we consider variations in the state trajectory , and derivatives of the map
x - .(x), the control does not react, and so we do not introduce derivatives in the
u variable.

We assume in this section that the optimal stochastic open-loop control u* is
Markov. We can then determine the integrands y' in (3.5).

Lemma 4.1. For I < i < n
=' ( -'g' + Psg('(s))D'.s.

Proof. Consider a stochastic system with components x*.,(xo), D.,,, and Yo,,
where

Yo, hx(r.x,(xo), t,)D*., dr.

Now

p,D*, + 'o., = M, = E c.(x* Tr(xo))D*.T + hx(r)D*., drIF,].

Writing x = x. ,(xo), D = D*.,, y = Yo,, by the Markov property this expectation is
the same as

E cx(x*T(x ))D,D+ I, (r)D,*,drD + vlx, v, Dl = V(t, x.v.D).
L J1

From the left-hand side this also equals p,(x)D + y. The martingale representation
result of Elliott and Kohlmann [9], [10] follows from the Ito formula, using the
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differentiability of the solutions of stochastic differential equations as functions of
their initial conditions, and equating the bounded variation terms to zero.
Therefore,

" n (' '

MI = L lc D + fohxD dr] + I fo ".dw' r

-V(O, X0, 0, 1) + Z J pj(r)gI"(r)D*., dwr' + j fj p(r)g(')(r)D* r dwr.
- 0=1 .0

(4.1)
That is, ,, - (px(r)gl)(r) + p(r)g(')(r))D . •

Remarks 4.2. Substituting in (3.6) we have

0) o == p.,f(s)v ds + , pj(s)g)(s)gI)(s)v , A

+ ih,(s)'vds .

Returning to the perturbation

u0(t) = u*(t) + O(v(t) - u*(t))

of the optimal control, we have

dJ(uo) >

,a0 Ioo-
That is,

E (s)(v - It*) ds + p (s)g"(s)gi)(s)(v, - u) ds

+ h,,(s)(v, - u*)ds 0 (4.2)
.'0 1

for all v e U. Define the Hamiltonian by

H(x, v, t, p(t)) = p(t)f(t, x, v) + P P (t)g(t(, xuI*)qg'( t x, v) + h(t, x, v).

(4.3)

Then, because (4.2) is true for all v e U, we have the following result:

Theorem 4.3. If u* is the opin'al control, then a.e. t and a.s. w

(7(xo,(Xo), "*, t, P(O) (v, - ) 0

for all v e U.
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Finally we derive the equations satisfied by p. We first show p satisfies aforward stochastic partial differential equation.

Theorem 4.4.

Pt 1  .X* T(xo))D*. T + I h'x(r, 4 *,(x0o), i4')D* dr]

Pr-fx(r, xo*,(xo), 0i~) dr - , (xo), u,*) dr

+f p.(r)g(r, x* (xo), up') divr

- o {Px()iY (r- xc), u*)gx('(r, xo*7(xo), u,*) dr. (4.4)

Proof. From (4.1)

M, pD*., + yo,,

0.TtxO))DT + TTIx(r)D* , d]

+.(~()rD , dw,' + ' f P(r)g( )(r)D* , dtv.

Multiplying by 11* -(D* 1  ,whose equation is given by (2.4), we see

=Po -E ,frx*2

SfPgx') (r, XO' ,(x), z4') dw,, - fhx(r, * (x), u,*') dr

+ fp..(r)g(')(r-) dtv, + X pgx9')(r) divi

-~~ p;(r)g'(r)g(')(r) dr f PU9' xrg~()d

iI Jo i Jo

Po f p,jf,(r) dr - {hx(r) dr

+ {p.(r)g(r) div, - Z f Px(r)0( (r)g~f)(r) dr.
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Here

Po = E[cx(xo'r ( 0D'+ hx(r, x* (xo), u *')D* , dr]

and the functionsf .(r), hx(r), g(r), g ' (r) are evaluated at the argument
(r, x*.,(xo), u*'). 0

Remarks 4.5. Although (4.4) is a forward stochastic partial differential equation
for p it does not appear to have a unique solution; certainly giving any (constant)
initial condition does not determine a corresponding vector function solution p.
We now show p is given by a backward, nonstochastic, parabolic system of partial
differential equations which, under the given conditions, has a unique solution.

Theorem 4.6. p is the solution of the backward parabolic system of partial
differential equations

aF,

+ p.'(t)f(t) + h,,(t) + p(t)f.(t) + I p.(tg01(t) 0 01~(t) = 0

with terminal condition

PT = C.(X).

Proof Consider again the function

M,= V(t, x, y, D) = p,(x)D + y

of Lemma 4.1. Writing again the Ito formula we have

V(t, x, y, D) =V(O, xo, 0, 1) + + Tv - av+ --hxr

+ fxr)D*., + 4 xj gl'(r) ®D g('I(r) dr

+ the two stochastic integral terms in (4. 1). (4.5)

However, M, =V(t, x, y, D) is a martingale so, as observed in the proof of Lemma
4.1, the dr integral (that is, the bounded variation term) must be identically zero.
Therefore, the dr integrand in (4.5) must be identically zero, so

or'~~~ I)/aO
2 V,.

+ -f(r) + u-.hx(r)D*,+ f()~ + 4 -g')(r) ®D g('I(r) =0.

Recall V = p,(x)D + y, Eo

Ot += (t)f( t) + hx~t) + p(t)fx(t) + 0 ~tg( ) = 0.
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D*,1 is nonsingular, so we see that p is the solution of
0,,

t + P"(t)f(t) + h(t + p(t)f (t) + I Y p.(t)g"(t) 8 01(t) = 0

with terminal condition

PT = cW(x). 0

5. Conclusion

Using the differentiability result of [3] the proof of Bensoussan [2] is simplified and
the adjoint process, when the control appears in the diffusion term, is obtained.
Furthermore, by applying the martingale representation result of Elliott and
Kohlmann [9], [10], explicit equations for the adjoint process are established.

Under certain conditions (see [5] and [15]), if the optimal control is Markov
we can write

V(s, x) = E[c(xgT (xo)) + f h(r, x*.(Xo), u*) drIF,]

,. x C(Xt*T(W)+ f zh(r, x*,(x), u*) dr],

where x = x.(X), for the optimum remaining cost. Then, at least formally, we see
p3(x) is the gradient V(s, x); so p. is V,(s, x).
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MARTINGALES ASSOCIATED WITH FINITE MARKOV CHAINS
by

ROBERT J. ELLIOTT

1. Introduction.

In a recent paper, [1], Phillipe Biane introduced martingales Mk associated
with the different jump 'sizes' of a time homogeneous, finite Markov chain and

developed homogeneous chaos expansions. It has long been known that the Kol-

mogorov equation for the probability densities of a Markov chain gives rise to a
canonical martingale M. The modest contributions of this note, are that working

with a non-homogeneous chain, we relate Biane's martingales Mk to M, calculate

the quadratic variation of M and thereby that of the Mk. In addition, square field

identities are obtained for each jump size.

For 0 < i < N write ei - (0,0,.... 1,.. .,0)* for the i-th unit (column) vector

in RN+1, (so e0 = (1,0,... ,0)* etc.). Consider the (non-homogeneous) Markov

process {Xt}, t > 0, defined on a probability space (Q, F, P), whose state space,
without loss of generality, can be identified with the set S = {e0 , el,... eN}

Write p' = P(Xt = ei), 0 < i < N. We shall suppose that for some family of
matrices At, .= satisfies the forward Kolmogorov equation

dpt
dt = Atpt. (1.1)

At = (aij(t)) is, therefore, the family of Q-matrices of the process.

It has long been known (see, for example, Liptser and Shiryayev [4], Elliott [2])

that the process

Mt = Xt - XO - ArXr-dr (1.2)

is a martingale. (See Lemma 2.3 below.)

ACKNOWLEDGMENTS: Research partially supported by NSERC.Grant A7964,
the Air Force Office of Scientific Research United States Air Force, under contract
AFOSR-86-0332, and the U.S. Army Research Office under contract DAAL03-87-
0102.



Solving (1.2) by 'variation of constants' we can immediately write

xt = (, S0)(Xo + f (0,r)dM) (1.3)

where D is the fundamental matrix of the generator A. Equation (1.3) is a mar-

tingale representation result which in turn gives a representation result in terms

of the Mk. (By iterating this representation Biane's homogeneous chaos expan-

sion can be obtained; this is quite explicit, in terms of matrices 4 and matrices

associated with A.) Functions of the chain are just given by vectors in RN+l and

in Section 4 'square field' identities are obtained for each jump 'size'.

2. Markov Chains.

Consider a Markov chain {Xt , t > 0, with state space S = {e0 ,. .. eN

and Q-matrix generators At. We shall make the following assumptions.

ASSUMPTIONS 2.1. (i) For all 0 < i,j < N and t > 0

jai1(t)l < B' (2.1)

for some bound B'; write B = B' + 1.

(ii) Forall 0 <i,j <Nand t > 0, aij(t) > 0 if i j and, (because At is a

Q-matrix),

aii(t) = - aji(t). (2.2)

;0i
The fundamental transition matrix associated with A will be denoted by

1(t, s), so with I the (N + 1) x (N + 1) identity matrix,

d (t,s) = A tl(t,s), (s,s) = 1 (2 3)
dt

and

dik(t,s) = - (t,s)As, b(t,t) = I. (2.4)

ds

(If At is constant 4(t, s) = exp A(t - s).)

BOUNDS 2.2. For a matrix C = (cij) consider a norm ICI = m.ac Icij[. Then

,.orallL., I At1 <B. The columns of & are probability distributions so 14I(t, s)l < 1

for all t, s.

Consider the process in state x E S at time s and write Xst(x) for its state

at time t > s.

Then E[X,,t(x)] Es,[Xt] = 4(t, s)x. Write Ft for f.he right continuous

complete filtration generated by a{Xr :s < r < t} and Ft = Ft.



LEMMA 2.3. The process Mt = Xt - X 0 - ArXr-dr is an {F} martingale.

Proof. Suppose 0 <s < t. Then

E(It - Ms I F s] = EJXt - Xs - i ArXrdr I F]

=EIt- S- Is ArXrdr I X.3J

= Es,x. [Xt]- Xs - ArEs,x [Xrldr

= 4(t, s)Xs - - 1 ArO(r,s)Xsdr = 0 by (2.3).

Therefore,

Xt = X 0 + ArXrdr + Mt = X 0 + ArXr-dr + Mt

where M is an {Ft} martingale.

NOTATION 2.4. If x = (xO, x,...,xN)* E RN+I then diag x is the matrix

(X0 0 )
X1

xN

LEMMA 2.5.

(M,M)t = diag j ArXr-dr - f(diag Xr-)A*dr - Ar(diag Xr_)dr.

Proof. Recall X t E S is one of the unit vectors ei . Therefore,

Xt 0 Xt = diag Xt. (2.5)

Now by the. differentiation rule

Xt 0 Xt = X 0 0 X 0 + JXr- 0 (ArXr-)dr

+ Xr- 0 dMr + (ArXr-) 0 Xr-dr

tdMr®Xr_ + (M,M)t+Nt

... .. ... ,.... 
.. , ,,. . .



where Nt is the Ft martingale

[M,M - (M,M)t.

However, a simple calculation shows

Xr- 0 (ArXr-) = (diag Xr-)A*

and

(ArXr-) 0 Xr_ = Ar(diag Xr_).

Therefore,

t-
Xt 0 Xj = XC0 ® X 0 + ]/0(diag Xr_..)A~dr

+ f Ar(diag Xr-)dr + (M,M)t + martingale. (2.6)

A)so, from (2.5)

Xt 0 Xt = diag Xt = diag X 0 + diag] ArXr-dr + diag Mt. (2.7)

The semimartingale decompositions (2.6) and (2.7) must be the same, so equating

the predictable terms

(M,M)t = diag j ArXr-dr - (diag Xr_)Ardr - Ar(diag Xr_)dr.

We next note the following representation result:

LEMMA 2.6.

x = i(t,0) (Xo + jI (r, o)-dMWr). (2.8)

Proof. This result follows immediatciy by 'variation of constants'.

- 7 A eV. rePntpri he a vector

f(t) =(fo(t),... ,fN(t))* E RN+R

so that f(t, Xt) = f(t)*Xt (f(t),Xt) where ( , ) denotes the inner product

in RN+l.

We, therefore, have the following differentiation rule and representation result:



LEMMA 2.8. Suppose the components of f(t) are differentiable in t. Then

f(t,Xt) = f(, xo) + (f'(r),Xr)dr + (f(r), ArXr.-)dr + j(f(),dMr)

(2.9)

Here, f (f(r), dMr) is an Ft-martingale. Also,0£
f(t, Xt) =f(t), ID(t,O)Xo) + 1f(f(t): (D(tr)dM'). (2.10)

This gives the martingale representation of f(t, Xt).

REMARK 2.9. With an obvious abuse of notation, if the jump times of the

chain are Tl (w), T2 (w),..., we can write down a 'random measure' decomposition

of Xt from (1.2) as

X X 0 +f i - Xr_)( 6Tk()(dr)6ik(w)(i) - aiXr_ )
i k

+ 1 (ei - Xr-)air_ ,
i

because Z(e i - X,-)aix,. = Ar-Xr-. Here, 6Tk(w)(dr) is the unit mass at

Tk(w) and, with XT,(w) = eik(W), 6 ik(w)(?) is 1 if i = ik(w) and 0 otherwise.

That is, t
Mt = fo E e- Xr...)(ZI5bTk (w)(dr)Sik (W) -ciXrdr).

i k

This representation would provide another means of calculating (M, M)t.

3. Shift Operators.

The formulae of Section 2, particularly the martingale representations (2.8)

and (2.10), provide basic information about the Markov process X. However, if the

'size' of the jumps is considered some other expressions, including a homogeneous

chaos expansion, were obtained recently by Biane [1]. We wish to indicate how the

results of Biane relate to the above expressions. First we introduce some notation.

NOTATION 3.1. Write i E j for addition mod (N + 1). For Xs E S =

{eO,el,. ,eN},say Xs ei, and k =,...,N, write

43 eihDk-



That is, Xs X3 corresponds to a cyclic jump of size k in the index of the unit

vector corresponding to the state.

Suppose Xs- = ei and X,- = ej, where i = i E k, then clearly

(X ._ )*AsXs- = aji(s). (3.1)

We now wish to introduce some subsidiary matrices associated with As =

(aij(s)). These can best be explained by first considering the 3 x 3 case. Suppose

/ a0 0  ao1  a02

A al0  all al2)

a20 a21 a21

Then

-ao 0 C02

A' = alo -a~l 0

0 a21  -a 02(-a20 a01  0
A 2  0 -aol a12)•

a20  0 -a12

Note that if A is a Q-matrix a0 i + ali + a2i = 0, so A1 + A 2 - A.

In general, if As = (aij(s)) is an (N + 1) x (N + 1) Q-matrix, A k is obtained

by forming a matrix from the k-th subdiagonal (continued as a superdiagonal),

with the negative of the column entries on the diagonal and zeros elsewhere. By

construction, Ak is a Q-matrix, and it is clearly related to those jumps of 'size' k.

As above,
N

A= Ale (3.2)
k=l

Also,

((Xk_)*A,,X-)(Xs_ - Xs-) = AkX, (3.3)

so N

((Xk •)*AX_)(Xk - Xs-) = AsXs-. (3.4)
k=1

We also wish to introduce matrices ,k 0, whose off-diagonal entries

are the (positive) -square roots of those of Ak, and whose diagonal. entries are the



negative of that square root in the same column. That is, in the (3 x 3) case above:

10 a 2-1~ 0 )
_: 0 - VT/-1 ,/ .K --- 0 - a-2)

For k 1,-,N write

Ak (,- *AX.- 12k

so Ak is a predictable process.

DEFINITION 3.2. In our notation the matrices Mk introduced by Biane [1]

are, for k = 1,...,N

Mt" = S ((X - )*AX. - l 1 21(X = X f) - (k)* - d

O<s<t
(3.5)

LEMMA 3.3. Fork= 1,...,N,

tk j k

Proof. First note

(x_)* .dXs = (Xk AX)*.x8 =(xk_)* .(X-x_)= (x8 =x_). (3.6)

Also, Xt = X 0 + AsXs-ds + Mt, so

MP t kk' dX - ft Ak AXs-

t k•

o ((x _.)*4x 3 1_2(Xk)* d.Xs

_ o((X*A~X~_)
-1I 2 ((k)*AsXs-)ds,

and the result follows from (3.6).

- )' . ... ... -~-t -- -""" - -Y: _7-: - - --



LEMMA 3.4. For k - ... , N, (AMk, Mk)t

Proof. M k = jA k - dMs, so

(MkMk)t = Akd(MM)s(Ak)*

M 1 -1/2k

* (diag (AsX-) - (diag Xs_)A* - As(diag Xs-))

* (X._)((X4 )*AsX._)-.l/ 2ds.

Now for k $ 0:

(X_")*diag Xs_ = 0 = (diag X,8 _)(Xk_)

and

(Xk_)* (diag (AX -)) (X._) (X -)*AsXs.

Therefore, (Mk, Mk)t = jds = t. 0

REMARKS 3.5. For k 5 1, Mk and M1 have no common jumps, so [Mk, Met

= 0 and (Mk,Mt)t = 0. Therefore, M 1,...,MN are a family of orthogonal

martingales, each of which has predictable variation t.

Having expressed Mk in terms of M we now wish to express M in terms of

the Mk.

N t
THEOREM 3.6. Mt = AkXj-dMk, so the Mk form a basis.

k=10f

Proof. From (3.6) first note that

N
dX.9=L(Xk - X_)(Xs)* dXq.

k=1

Therefore,

Xt -XO 0 AqXs-ds + M= j dXq (3.7)

N t
=- S (X,_ - X.,_.)(X.)* .(AaXq.ds + dMs). (3.8)

k=1



By definition dMk = ((X _)*A 3X3_)-d 2 (X s)* dM 8 so (Xk_)*' dM, =

((Xx_)*AsX_) 1/2dMk. Substituting in (3.8)

t N
Xt - Xo =1 (xk_ - X

k=1

+ 1: f k- X 3.)((X.,)*AsX..)1/ 2 dM..
k=

From (3.3) and (3.4) this equals
t N

= AsXs-ds + 0 j dM .. (3.9)
k=1

Comparing (3.7) and (3.9) we see

N t
Mt = ] 1 ;kX,,-dMk. (3.10)

k=l

4. Discrete Derivatives for Different Jump Sizes.

Consider a function f on S = {ei}. For simplicity we suppose f is constant in

time. Then, as noted in Section 2, f is represented by a vector f = (fo,'-', fN)*

and

f(Xt) (f, Xt) = (, Xo) + j (f, ArXr-)dr + (f, Mt)

t N t

U= (fX) + W)fAXr-)dr N (f";kxr-di4k (.1
k10 (4.1)

from (3.9), and this is
t N t

(fX 0 } + J (A*f, Xr-)dr + 5 f-((A)*fX-)dMk. (4.2)

We now re-establish the 'square field' formula of Biane (1] by calculating

f(Xt) 2 in two ways.

LEMMA 4.1. A*f2 - 2f. A2f = *

k=1

Proof. 17nction multiplication is pointwise in each coordinate, so f2 corre-

sponds to the vector (f2,.. f2 )*, andN .

f 2 (Xt) (f2,'X0 + (A ,f2,Xr-dr ]((Ak)*f2x)dAk

= (f(Xt).



Using the differentiation niL- this also equals

= f(Xo) 2 + 2j0f (Xr..)df (2Cr) + [f (X), f(X)lt

N t

+ 2 N 2C~, r-) ((AXr)*f, Xr-)dMrk + [f(X), f (X)]t.
k=1 (.

Now

[f(X), f (X)]t = A f(Xr)Af (Xr)
O<r<t

N

= S S ((Ar)*f, Xr( M)

k=1 O<r<t

N

+= 5] ((4)*f, Xr...) 2dr, from (3.5).

Substituting in (4.4)

- +2 2(fXr-)(AfXr-)dr

10 N

N ft

k=

variatio tem

NN
(A~f 2,X~-..) = 2(,J)4,Xr-) +r S45a ((-'fXr.. 2

k=1l



That is, as functions on S

N

((-k)*f)2 = A;f 2 - 2f. Af.
k=1

]

(Ark)* corresponds to a discrete derivative of 'amount', or in 'direction' k.

However, the algebra suggests that (4)2 should be related to Ak.

A more specific relation is now obtained.

LEMMA 4.2. Fork=1,...,N

((-k)*f) 2  (A)* 2 - 2f. (A)*f.

Proof. From the form of Xk and Ak, for any f E RN+l

(Ak)*f = (ako(-fO + fk), ak(DlJ (-fl + fk(D1),

. .,ak(DN, N(-fN + fkdN)),

2 2
(Ak)*f 2 = (ako(-f +fS?),ake1,1(-f? +fkel),

• .., NAN(-fk + )),

(Ak)*f = (va' l-(-fo + fk), V/-k11 (-fl + fke1),

•..., V k-,N(-SfN + fk(DN)).

Therefore, as function multiplication is pointwise, that is coordinatewise:

( = ( fko( - 2 fofk + fs),..., akN,N(fkT - 2 fNfkEN + fsN))

f((Ak)*f) = (kO(-S 2 fS+fofk),...,ak6N,N(-f 2 +fNfkNN)).

Operating coordinatewise, for example,

(-fJ + f" ) - 2(-f + fjfkej) = f? - 2f+fkj + 2

and the result follows. El

Finally, we note that substituting (3.10) in (2.9) we have

N t

=t 4 (t, 0) (XO +Zj (r, 0)1A.ZXr-dMk). (4.6)
k=1



Now Xr- is a.s. equal to Xr which equals
NV r

0--A 2 Mk2)

Xr = TI+(r,0)(X 0 + ' Tr,,0) 1A" X dM )
k:2=1 0r r2- 2

Substituting in (5.1) we have

Nxt = -I(,,O)Xo + E 10' 14(t,r),!r11(r, O)XodMrk
! k=l

,N N t rl

41(t, rl)Ark 1 (rl, r2 )ArXr2 dMr dM2 .

ki =1 k2=1

Iterating this process we obtain the homogeneous chaos expansions of Biane [1],

(see also Elliott and Kohlmann [3]), in terms of the non-homogeneous transition

matrices -1P and the matrices Ak.
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A Partially Observed Control Problem for Markov Chains

ROBERT J. ELLIOTT

1. Introduction.

In this paper a finite state space, continuous time Markov chain is considered. The

state space of the chain is taken to be, without loss of generality, the set of unit vectors

S = {ei}, ei = (0, 0,... , 1,... , 0)* of RN+1, thus facilitating the use of linear algebra.

Basic martingales associated with the Markov chain are identified and the solution to a

natural filtering problem associated with the chain is given. This describes the recursive

estimation of the state of the Markov chain if only the total number of jumps is observed.

Such a filtering formula can be obtained by specializing results in the book of Bremaud [5];

however, using the basic martingales our notation and framewoik is qtice simple. The re-

lated Zakai equation for the unnormalized conditional distribution is then obtained. In

Section 5 the optimal control of a Markov chain is discussed in the partially observed case,

when only the total number of jumps is known to the controller. This control problem is

treated using the 'separation principle', by discussing the control of the unnormalized dis-

tribution given by the Zakai equation - that is, the filtering problem has been separated

from the control problem. The Zakai equation is a linear, vector equation driven by a stan-

dard Poisson process. Because the observation process, which counts the number of jumps,

is correlated with the state process the signal and observation processes are correlated, so,

in contrast to earlier work on controlled Markov chains, the control variable occurs in the

'diffusion' coefficient of the Zakai equation, multiplying the compensated Poisson process

noise. A minimum principle is obtained by adapting techniques of Bensoussan [1] and
calculating a Gateaux drvi,+;v,. .P;"P1, +I,- _+,' .-- 1. Lh "

- ~ A WF-UJ L" ,.,,'-i is lvuarr~Ov~ 6he integrallu

" a martingale representation can be obtained more explicitly. This enables the adjoint

process to be described, and new forward and backward equations satisfied by the adjoint

process are derived.

, ., ,, , ,/ : ,- & ,-- .. .... - ._ M • .1



In addition to the book of Br6maud [5], other works which discuss the control and

filtering of jump processes include [3], [4], [61, [12] and [131.

2. Markov Chain.

For 0 < i < N write ei = (0,..., 1,..., 0)* for the i-th unit (column) vector in R N + I.

Consider the Markov process {Xt}, t > 0, defined on a probability space ( , F, P), whose

state space is the set

S = {eoel,...,eN}.

Write pt = P(Xt = ei), 0 < i < N. We shall suppose that for some family of

matrices At, pt = (pt, ... pt). satisfies the forward Kolmogorov equation

dp,W = Atp,. (2.1)

At = (aij(t)), t > 0, is, therefore, the family of Q matrices of the process. We shall

suppose laij(t)l B for all ij and t > 0. Because At is a Q-matrix

a(t)= - aji(t). (2.2)

The fundamental transition matrix associated with A will be denoted by D(t, s), so

with I the (N + 1) x (N + 1) identity matrix

dd(t,s) = At (t,s), )(s,.S) = I (2.3)
dt

d(t,s) = - (t,s)A8, @(t,t) = I. (2.4)ds

(If At is constant P(t, s) = exp(t - s)A.)

Consider the process in state x E S at time s and write X.,t(x) for its state at the later

time t > s. Then E[X,,,(x)] = E,,[X] = (t, s)x. Write Ft' for the right continuous,

complete filtration generated by of{X, s< r < t}, and Ft = Ft. A basic result (see [8),

[11]) is

2
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LEMMA 2.1. Mt :X-Xo- AX,--dr is an {Ft} martingale.

Proof. Suppose 0 < s < t. Then

E[Mt - M, I F] = E[Xt- X8 - ArXr-dr F XJ,

because Xr Xr- for each w, except for countably many r,

= E.,x [Xi] - X, - j ArEs,x. [Xrldr

t

= 4D(t, s)X' - X, - j, ArA(r, s)Xsdr = 0 by (2.3).

Therefore,

Xt = X + ArXdr+ Mt (2.5)

= X0 + ArXr-dr + Mt.

NOTATION 2.2. If x = (xo,xI,... ,XN)* E RN+1 then diag x is the matrixO0 !
X1

XN

We now give a martingale representation result.

LEMMA 2.3.

Xt= 1)(t, 0) (o~+ (r. 0Y'djr) (2.6)

Proof. The proof follows from (2.5) by variation of constants. Alternatively, differ-

entiate (2.6).

3
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3. Some Basic Martingales.

If x, y are (column) vectors in 17,N+ I we shall write x y = x*y for their scalar (inner)

product.

Consider 0 < i,j < N with i 3 j. Then

(X,- ei)e!dX, = (X,. ei)e!AX,

= (X,-. .e)e(X, - X,-) = I(X,_ = ei, X, = ei).

Define the martingale

""j 8*)e dM

(Note the integrand is predictable.) Then

M = (X,- " ei)edXs - j(X,- e•)e*A"X -ds

and, writing Nt(i,j) for the number of jumps of the process X from ei to ej up to time t,

this is

- N (i,j) - I(X, = ei)aji(s)ds

= Nt(i,j) - I(X 8 = ei)aji(s)ds,

because X, = X,- for each w, except for countably many s. That is, for i # j,

~t
Nt(i,j) =]f I(X$ = ei)aji(s)ds + Mt'.

For a fixed j, 0 :_ j < N, write Nt(j) for the nunber of jumps into state ej up to

time t. Then
Nt(ji,i)= ij ZjI(X$ = ei)aji(s)ds + Mt'

i= l"=
i~j i#j

N
where Mt is the martingale Mi't. Finally, write Nt for the total number of jumps (of

ij

any kind) of the process X up to time t. Then

N NN t

N= E Nt(j) = E i I(X = ei)aji(s)ds + Qt
j=l j=1 i-I

4



N

where Qt is the martingale > M. However, from (2.2)
j=1

N

aii(s) - aji(s)
j=1

so

N -- I(X, = ei)aii(s)ds + Qt. (3.1)

4. Filtering.

A natural problem is the recursive estimation of the state Xt of the Markov chain,

given the number of jumps which have occurred to time t. (Formulae for other counting

processes such as Nt(j) can be given.) That is; we have on the probability space (Q, F, P)

a

SIGNAL, given by (2.5),

Xt = X0 + j0tAsX-ds + Mt (4.1)

and an

OBSERVATION PROCESS, given by the counting process

t

N = h(s,X)ds + Qt. (4.2)

Here
N

h(s,x,) - >1I(X8 = ei)aii(s).
i=1

NOTATION 4.1. Write a(s) for the vector (-aoo(s), -ai(s),..., -aNrI(s))*. Then

h(s, X,) = a(s). X,. We shall further abbreviate h(s,X,) as h(s).

Recall Xt and Nt are both adapted to the filtration {Ft}. Write {Yt} for the ri, .at

continuous, complete filtration generated by N, so Y C Ft for all t.

NOTATION 4.2. If {¢t} t > 0, is any process write 4 for the Y-optional projection

of 0. Then, (see [7], p. 60), for all t > 0

qSt = E[o, I Ytl a.s. (4.3)

k5
_-
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Similarly, write q for the Y-predictable projection of q. Then, for all t > 0

'Pt = E[t I Ye_] a.s. (4.4)

REMARKS 4.3. From Theorem 6.48 of [7], for almost all w

except for at most countably many values of t. Also, as noted previously, Xt Xt- except

for countably many values of t. Therefore,

fh(r, Xr)du = j h(r, Xr)dr

= j 14r,Xr-..)dr.

NOTATION 4.4. Write

j = Xt = E[Xt I Y],

and note Po = E[Xo] = po, say. Also, as h(r) = a(r). Xr,

h(r) = a(r) -.

We shall also introduce the vector

h(r)Xr = diag a(r) Xr,

so h(r)Xr = diag a(r) .Pr.

DEFINITION 4.5. The INNOVATION PROCESS is

r
Qt:= Nti- h(r)dr

= t -]J h(r)dr =Nt - J0hr)r

by Remarks 4.3.

6



It is easily checked that Q is a Y-martingale. Therefore, we can write

N, - h(r-)dr + Qt. (4.5)

Calculations using Fubini's theorem show that the process

M P :=j,- p0 - j AP,_ds

is a square integrable martingale on the Y-filtration. Therefore, M can be represented as

a stochastic integral with respect to Q,

jt= j0 YrdQr-

where 7 is a Y-predictable RN+1 valued process such that

E [ Yr12h(r)dr] < 0o.
0

Therefore, we can write

E[X, I Yt] = Pt = PO + ArPi-dr + jOrdQr-. (4.6)

It is known, see [4] or [5], that

7Y= I(P(r-) .a(r) 0 0)(Q(r-) a(r)) - '{diag a(r) .1(r-) - (P(r-) . a(r))f(r-) + Ari(r-)}.

(4.7)

Therefore Pt = E[Xt I Y] is given by the equation

Pt = Po + ArPr-dr + jt'r(dNr- a(r). Pr.-dr) (4.8)

where Yr is given by (4.7).

REMARKS 4.6. The disadvantage of (4.8) is that it has the inverse factor (a(r).fr-)-'.

This problem is avoided by considering the related Zakai equation for the unnormalized

distribution.

7
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Suppose there is a k > 0 such that -nii(r) > k for all i and r > 0. Then h(r) - 1

(a(r) Xr')- l < k- 1 for all r > 0. Introduce a new measure P on (fS, F) such that

B[d I F,] =(4.9)EdP  =A

where A is the martingale

At = 1 + A,_(h(r-) - - 1)dQr. (4.10)

It is known, (see [4], [5]) that under P1 the process Nt is a standard Poisson process.

Consider the (P1 , F) martingale

X= 1 + / Xr-(h(r-) 1)dQr. (4.11)

Then it is easily checked that Att = 1.

To obtain the Zakai equation we take P as the reference probability and compute

expectations under P1 . However, it is under measure P that

Nt = ]h(r-)du + Qt.

Write Il(At) for the Y-optional projection of A under P1. Then for each t > 0

II(A,) = E,[A, I Yt] a.s.

Quoting again from [4] or [5] we know that

I.t

H(At) =1 + ArdQr where Ar = H(-Ar-)(h(r-) - 1). (4.12)

For any integrable, Pt-measurable, random variable 0 write

u(O) = Ejtoj I Y].

Then
i v N rT , .-

ak--,.t) = iV1i/tAt ItJ = qt, say.

Also,

a(1) II(At) = 1 + II('Ar-)(h(r-) - 1)dQr. (4.13)

8



Now qt is an unnormalized- conditional distribution of Xt given Yt, because

Pt = E[Xt I Yt] = o(Xt)/o(1) = qt/II(At). (4.14)

Note that P0 = Po = qo. The Zakai equation for the unnormalized distribution q is,

therefore, obtained by calculating the product

qt = t I(A) (4.15)

using (4.8) and (4.13) to obtain:
I.0t I't

qt - qo +] Arq-dr + (diag a(r) - I + Ar)qr_ . (4.16)

5. Optimal Control.

Consider a Markov process X, as defined in Section 2, whose state space is the set S

of unit vectors {eo, el,..., eN } of RN+I. However, we now suppose that the family of Q-

matrix generators At(u) depend on a control parameter u E U. Here U, the set of control

values, is a compact, convex subset of some Euclidean space Rk. We take 0 < t < T and

suppose At(u) is measurable on [0,T] x U and At(.) is continuously differentiable on U.

Further, we assume lai(t,u)l : B for (t,u) E [0,T] x U.

We suppose that only the total number of jumps to time t, Nt, is observed. (The

techniques below work for other kinds of observation processes such as Nt(j, k), Nt(j) etc.)

{Ft}, (resp. {Yt}), is the right continuous, complete filtration generated by X (resp. N).

CONTROLS 5.1. The set U of admissible controls is the set of {Y}-predictable

processes with values in U. This means that, if T, T2,... are the jump times of N, then

for T,, < t < T,,+1 , u E U is a function only of T1,T 2 ,... ,T and t. For each u E E, as in

Lemma 2.1, Mu is a (P, {F}) martingale where

Al' . -. ,. - )A ( U d.

For u E _U, write

a(s, u) - (-aoo(s, u), -all (s, U),..., -aNN(S, u))*

9



and

h(s, u) = h(s,Xu) = a(s, u). X,. (5.2)

Then with again denoting the Y-optional projection under P

P,(u) = X,, = E[X., I Y,]

and h(s, u) = a(s, u) . 8 (u). Also,

h(s,u) X - diag a(s,u) Zu

and

h(s, u) .X' = diag a(s, u) .,(U).

Nt can, therefore, be written

N= jh(s, u)ds + Qu (5.3)

Sjh(s-,u)ds + Qu. (5.4)
i0

Unlike the situation considered in [9], the noises in the signal and observation processes

are correlated, [Xu, N]t # 0.

COST 5.2. A real function on the state space S = {ei, .... , £N} is represented by

a vector E = ( 0,.. . , e) E RN+ . Write (e,X) = x for the inner product on RN+1.

The control problem we wish to consider is that of choosing u E U so that the expected

cost
J(u) = E[(e, x']

is minimized.

NOTATION 5.3. Write P1 , as in Section 4, for the probability measure under which

N is a standard Poisson process.

For each u E U introduce the (P1 , F) martingale

T=1 + j T-(h(,-,u) - 1)jdr

10



and write UI(XA) for the Y-optional projection of A under P1. Then, El [P =t-X

a nd w t h o( X u) = E [A -X ~' I Y t] = q t(u )

we have, as in (4.15),

qt(u) = IXUP()

Furthermore, with At (u) = (aij (t, u)) write

Bt(u) =(diag (a(t, u)) - I + At (u))

-1 aoi(t,u) .. aoN(t,u)\

aio(t, u) -1 .. aN(t, u)

= NO 't ) .. .

Then, for u E L, the unnormalized distribution qt(u) is given by the Zakai equation

qt(u) =PO + f0 A,(u)qr...(u)du + jOB(u)q...(u)dQr,.

Here Q is a standard Poisson process under P1.

The expected cost if u E U~ is used is

J(u) = E[(E, Xu)] = Ei f4-(E, Xu)1 E, [(E,7Xu )]

- E1[(,E 1[AX I YTjJ)J = El [(E, qu)].

The control problem has, therefore, been formulated in separated form: find u E UL which

minimizes

J(u) = E [(e, qu)]

where for 0 < t < T, qt(u) satisfies the dynamics

qt(u) = PO + I A,(u)qr-(u)du + joB(u)q,-u)dQ,. (5.5)

Under the measure P1 , N is a standard Poisson process, so =Nt - t is a (P1 , Y)

martingale. Furthermore, the con~rols u E U are in the 'stochastic open ioop' form dis-

cussed by Bismut [21 and Kushner 1101. That is, the controls are adapted to the filtration,

as described above, and are not explicitly functions of the state q.

W Z-11



6. Differentiation.

NoTA'rION 6. 1. For u E U write V'u(t, s) for the fundamental matrix solution of

d(Du(t, s) =At(u)(Pu(t-, s)dt + Bt(u),I~u(t-., s)(dNt - dt) (6.1)

with initial condition 41u(s, s) =I, the (N + 1) x (N + 1) identity matrix.

Note that At (u) - Bt (u) =diag (1 + aii (t, u)) and write

Du (s, t) = diag ( exp jt(I + aii(r, u))dr) .

Then ifT'P t <T,+,,

,u(t,o0) = Du(t, T,) (I+ BTfl(uT))Du(T, T-)(I +BT.-, (uTf.-l))

-(I+BT,(uT))Du(T,,o). (6.2)

The matrices Du(s, t) have inverses

we make the following assumption:

AssumPTION 6.2. For u E UL and t E [0, T] the matrix (I + Bt(ut)) is nonsingular.

The matrix I) is the analog of the Jacobian in the continuous case. We now derive

the equation satisfied by the inverse TI of I).

LEMMA 6.3. For u E U consider the matrix Tu defined by the equation

pt ~t
1I!U(t, s) =I - Q~u(r-, s)Ar(u)dr -] is u(r-, s)Br(u)dQ-r

+ jtiPu(r-, s)B'.(i)(I + Br(U))'dr 63

Then TJu(t, s)-Iu(t, a)=I fort t> s.

Proof. Recall

~1U~~s)= 1 ] ~(u'~ t (r-s)dr + jBr(U)'IU(r S)dQr. 64

12



Then by the product rule t t'
=1±1 9A(d + IF")~

j 'I'dr - j 'IdQr + TIB 2(I + B)dlr

-, XB 24'dNr +rt T B 2 (I + B)-'BdNr

=1I,

as the integral terms cancel. [0
We shall suppose there is an optimal control u* E U. Write q* for qu , (* for 4)u*

etc. Consider any other control v E U. Then for 0 E [0,1,

ue(t) = u*(t) + 0(v(t) - u(t)) E _U.

Because U C Rk is compact, the set U of admissible controls can be considered as a

subset of the Hilbert space H = ,21S x [0, T]: Rk]. Now

J(U > J(u*). (6.5)

Therefore, if the Gateaux derivative J'(u*) of J, as a functional on the Hilbert space H,

is well defined, differentiating (6.5) in 9, and evaluating at 9 = 0, implies

(J'(u*), V(t) - u*(0)) > 0

for all v E U.

LEMMA 6.4. Suppose v E E is such that u* = u* + Ov E U for 0 E [0, a]. Write qt(0) for

the solution qt(u*) of (5.5). Then zt exists and is the unique solution of the

equation
t A ",t

=t j (L r u*))Vrq*-dr + jA(u*)zr-dr

+ J t (,(r, U))Vrqrdr + joBr(u*)Zr._..dQr (6.6)

ft . . :t

Proof. qt() = Po+ A 0 ru +Ov)qr-(O)ar +o Br(U* +Ov)qr_(O)dQr. The stochas-
10 r\+vq~Od+10

tic integrals are defined pathwise, so differentiating under the integrals gives the result.

Comparing-(6.4) and (6.6) we have the following result by variation of constants.

13

-_ - = z------ +



LEMMA 6.5. Write

270, t f jT*(r-,O)(T4 (rlu )vrq*dr

+jf'*(r-,O0) (OB (r, U* )Vrqr*d~r

-f jt*(r., O)(I +Br(u*))l'Br(u*)(" (*2 .(r, u))Vrq*-dNr. (6.7)

Then zt = (D(,070

Proof. Using the differentiation rule

'I* t 070,t= jO (* d77 + f di *77- + [4,

Because t. I, therefore

"V(t,O>)?ot = jt(A4(r,u*))v~q* dr

It j( OB (r, U*))Vrq*-CFd~r

8 u

- jO(I + Br(U*)f I Br(U*) ( O(r, Us) Vrqr*. dNr

+ jO Ar(U),Ib(r-,O)770,r...dr + jO Br(U)'(, O)770,r-dQr

+ j1 B r (U ) U( ( ) ) v rq r*d N , a
- JB(U)(I + Br(u*)'Br(U)( (r, Us) Vrq*.~r

Now the dN integrals sum to 0, showing that Vq satisfies the same equation (6.7) as z.

Consequently, by uniqueness, the result follows.

COROXL1LARY 6.U. R(UO)j _= = ZEL(e,'!(T-, )77,T)J.

Prof.J~) E f~,q'(O) >.The result follows from Lemmas 6.4 and 6.5.

14



NOTATION 6.7. Write ]*(T, 0)' for the transpose of 1*(T, 0) and consider the square

integrable, vector martingale

Mt := El[I*(T, 0)'E I Yt].

Then Mt has a representation as a stochastic integral

Mt = E1 [,I)*(T, 0)'f] + j, 7IdQ,

where -f is a predictable RN+l valued process such that

jE[,Y,2Idr <00o.

Under a Markov hypothesis y will be explicitly determined below.

DEFINITION 6.8. The adjoint process is

Pt := Xk*(t, O)'Mt.

THEOREM 6.9.
ds u;)l =I ElOA (, ,oB rq*

dJO~ 19=0 fT  [Pr-, { U ((Ir~* (+ Br(U*)>'Br (u*) ( & (r) U*)) }rq)

aOB rqr-] 68
+ (yr, I'(r-, 0)(I + Br(U*))-l TU (r, u*))Vrq;_)]di. (6.8)

Proof. First note that
oT  0 aA ru" d

(MT, 770,T) = j Mr-,IF*(r-, 0)(u(r, u) rq*-dr

+ 1 T(Mr.-, %P*(r-, 0) ( (r, U*)) vrqr)d-Or

T (Mr ~, rOB

+/o <f'P'r-) (+ o-< q*(r- ' Or ) u (r  ))v qr-) Nr

T (Iyr, in(r,I )r+T(I y9*(- 0) (i9B(r, u*))Vrq*-)dNr

BI((_))lBr(U*) (8B.(r, u*)) vrq*-)dNr.- f,~~~~~, +V(r-, 0)(I + B,(U*))-r() (,*) q_ .(6)

\Oau (6.9)
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Taking expectations under P, we have

dJ(u ) = E [(e, -1*(T, 0)to,T)l
dO 1=o

= E [(b*(T, 0)'t, ?7O,T)1

= E[(MT, o,T)].

Combining the last two terms in (6.9) and using the fact that Nt - t is a P martingale,

this is

ITn
r~ ~ ~ (9 (r--, (u** )v

- (p,-, (1+ Br (U))lBr (U) r )Vrq

OB Vr
(-tr, ~~O ,*r- 0)I+B(*.l('U r

n

Now consider perturbations of u* of the form

u (t) = u*(t) + 9(v(t) - U(t))

for 0 E [0, 11 and any v E U. Then as noted above

dJ(u) = (J',(*), v(t) - u*(t)) > 0.
d9 e=o

Expression (6.8) is, therefore, true when v is replaced by v - u* for any v E ._, and we can

deduce the following minimum principle.

THEOREM 6.10. Suppose u* E U is an optimal control. Then a.s. in w and a.e. in t

( {( ( ) (I + Br(U*))-lB,(u*) (LB (r, u* } -

.1- , ,,AVT ( -\\,(: ,( ))i( u-)q* 0. (6.10)
iirW\V )' ')V rDr .(V))u\16r

16
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7. The Equation for the Adjoint Process.

The process p is the adjoint process. However, (6.10) also contains the integrand -t. In

this section we shall obtain a more explicit expression for Y in the case when u* is Markov,

and also derive forward and backward equations satisfied by p.

ASSUMPTION 7.1 The optimal control u* is a Markov, feedback control. That is,

U* : [0,T] x RN+l -+ U so that u*(s,q*_) E U.

Note that if ur is a Markov control, with a corresponding solution qt(um) of (6.5),

then urn can be considered as a stochastic open loop control urn(w) by setting

UM(W = UM(S, qs*-(Um)(W)).

This means the control ur "follows" the 'left limit' of its original trajectory qs(um) rather

than any new trajectory.

LEMMA 7.2. Write , for the predictable "integrand" such that

Apt = Pt -Pt- = btANt,

i.e., Pt = pt- + SrANt.

Furthermore, write

qt- = q,

Bt-(u*(t-,q)) = B*(q,- ) = B*(q),

and

Bt(u*(t, qt)) = B*(qt).

Then

St(q) = (I + B*((I + B*(q))q))-lpt_((I + B*(q))q) - pt-(q). (7.1)

Proof. Let us examine what happens if there is a jump at time t; that is, suppose

ANt= 1. Then from (5.5)

qt= (I + B*(q))q.

17
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By the Markov property and from (6.2) and Definition 6.8,

pt = E[D*(t, Tk)(I + BTk (U*)) ... D*(T, TN)e I YtJ

= pt(qt)

= pt((I + B*(q))q)

= (I + B*(qt)')-Ip-((I + B*(q))q),

and the result follows. Heuristically, the integrand 6 assumes there is a jump at t; the

question of whether there is a jump is determined by the factor ANt.

THEOREM 7.3. Under Assumption 7.1 and with 8t given by (7.1)

y, = )*(r--,0)((I + B'.(U*))Sr + B'.(U*)p,._). (7.2)

Proof. I*(t,O)'pt =-- t El[(*(T,O)'Il Yt = El[-*(T,O)'eI + 1 -. rdQ. However,

if u* is Markov the process q* is Markov, and, writing q = q*, D = b*(t,0),

Ei[c*(T, 0)' I Y] = El[@V*(T,t)'e .q,,f]

= EI[)*(T,t)'IE q].

Consequently, pt = Ei [-*(T, t)'f I q] is a function only of q, so by the differentiation rule:
ft Opbr- (q d- ft r~~

Pt = PO + jo 9 (Ardr + BqrdQ,) + fo -r dr

+ 1: (Pr -Pr- -OBqr ANr
O<r<t a

=PO + It 12-r- (Aqr- - Bqr) + 8r] dr +j10rdr.

Evaluating the product:

Mt = *(t,O) p = Po + j4(*(r-, 0)' -- (Aqr - Bqr-) + 8r dr

ft "On- Jot -ft.

+ Jo VI'(r-, 0)' dr + I) (r-,0)SrdQr + 1' (r- )'Ap

+ j$*(r-, 0)'BPr-dQr + j*(r-, 0)'B'8rdr + 1)*(r-,O)'B'Srdr.
1(7.3)

18



However, Mt is a martingale, so the sum of the dr integrals in (7.3) must be 0, and

,yr =*(r-,0)1(8r + B.(Ur)r + B;(ur)pr_-).

El

THEOREM 7.4. Suppose the optimal control u* is Markov. Then a.s. in w and a.e. in t,

u* satisfies the minimum principle

Pr-,A (rU*)(V -ur)q,-_ +6Or ) U( - U*u)\*vru,q0. _.

Proof. Substituting y from (7.2) into (6.10), and noting B(I+B) -(I+B)-B = 0,

the result follows. (Substituting for B and 8 gives an alternative form.)

We now derive a forward equation satisfied by the adjoint process p:

THEOREM 7.5. With S given by (7.1)

pt = El [4I*(T, 0)'e] - jA.(u*)pdr

- f( + B'(U))&dr + j brdNr. (7.5)

Proof. pt = T *(t,0)" Mt and from (6.3) this is

= El [,I,*(T, 0)'e - fA'P*'Mdr- fB'*'MdQr + j(I + B')-1B12 *'MdNr

+ "1 - r - j BlI*'7rdNr + j( + B)-B/ 2 jp*' ytdN,

=E 1 [#,*(TO )'4e - jA'Prdr- B'PrdQr + (I + B')-'B'prdNr

+ ((I + B')68 + B'Pr_)Cdr- (I + B')-'B'((I + B')br + B'Pr_)dNr

El[ *(T,0)'4 - A'Pr..dr + (I + B')6rdQr - B'6rdNr

and the result follows. 0

However, an alternative backward equation for the adjoint process p is obtained from

the observation that the sum of the bounded variation terms in (7.3) must be identically

zero. Therefore, we have the following result which appears to be new:
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THEOREM 7.6. With 6 given by (7.1) the Markov adjoint process pt(q) is given by the

backward equation

~Opt +OPt
-+ . (A*(q)' - B*(q)')q + A*(q)'pt + (I + B*(q)')6t = 0

with the terminal condition

PT =

8. Conclusion.

A finite state space Markov chain was considered. Without loss of generality its

state space was taken to be the set of unit basis vectors of RN+1. Basic martingales

associated with the Markov chain were identified and the solution to filtering problems

given when only the total number of jumps are observed. On the basis of knowing only the

total number of jumps a control problem associated with the Markov chain is discussed

in 'sepaated' form. That is the Zakai equation for the unnormalized distributions is

obtained. This is a linear, vector equation driven by a standard Poisson process in which

(unlike earlier work on controlled Markov chains) the control variable also appears in the

'diffusion' coefficient multiplying the noise term. By adapting techniques of Bensoussan

and calculating a Gateaux derivative the minimum principle satisfied by an optimal control

is obtained. Finally, in the case when the optimal control is Markov, the integrand in a

martingale representation can be obtained explicily, and forward and backward equations

satisfied by the adjoint process derived.
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Integration by Parts for the Single Jumnp Process

Robert J. Elliott and Allanus H. Tsoi

1. Introduction.

Integration by parts has played a basic role in the Malliavin calculus and its applica-

tions, particularly in the work of Bismut (1981). In this paper the concept is investigated

in the fundamental situation of a stochastic process with a single random jump. When the

state space of the process is Euclidean space (or, possibly, an open, non-empty subset of

a Euclidean space) the techniques of Norris (1988) can be specialized to the single jump

situation. This method, described in Section 2, considers a small e-perturbation in the

state space of the process. The effect of the perturbation can be removed by a Girsanov

change of measure, and the integration by parts formula is obtained by differentiating in e.

However, for a process whose state space is a general measure space, the perturbation

of the kind considered by Norris may not make sense. Such processes include those with

discrete state spaces, and, in particular, the process which observes a single random instant

at a time T. In the latter case the process pi = It>T takes only the values 0 or 1.

For general jump processes, therefore, an alternative e-perturbation in the time direc-

tion is introduced. By differentiating a new integration by parts formula, which involves

a time derivative, is obtained. In the case of the fundamental process pt an alternative

expression for the integrand in a martingale representation result is derived.

2. Integration-by Parts for lRd-Valued Single Jump Processes.

Consider a single jump-process with state space ad for some d > 1, which remains at

its initial position :0 until a random time T, when it jumps to a new random position Z.



The underlying probability space is taken as ([0,001 x 1{d , B((0,00]) x L6(IRd),,[). For

t > 0, let ri be the completed o-field generated- by the process up to time t. Suppose

(A, A) is the L6vy systen for the )roccss (see Elliott (1982)). For A E B(1Rd), let

p(t, A)= t>TZEA (2.1)

(t, A) = - J,,^ 7 A(s, A) dF" (2.2)

where Fj = y(Jt, co x ad). Then q(t, A) = p(t, A) - f(t, A) is an YI-martingale.

We assume that Ft and A are absolutely continuous, so that there exist functions f3

and g(y) > 0 such that

dF, = feds

A(s, dy) = g(y)dy.

Consequently,

P(ds, dy) dd (2.3)

0 if s > T.

Let v(t, y) be an -Rd-valued function which satisfies:

(i) v(i,.) is C' for each t > 0; v and j v(t, y) are uniformly bounded.

(ii) supp v(.,.) [ [0, oo) x K for some compact K C .

For small 6 E IR and any ¢ E L'(it), define p' by:

0(s,Jy)p-J(ds,dy)= / 0(s,9O(s,y))p(ds,dy), (2.4)

where

' (ty) = y + ev(t,y).

2k:



Set

-9 (ty) g( , Y)) (2.5)

and

X, = ((s, y)- 1)q(ds, dy). (2.6)

Define the family {Z', t _ 0) of exponentials by:

1

= exp(Xt- .(XC, xc)t) 1-i (1 + Ax)e- X.

O<s<t

=exp (jJlog A(s, y)dp - jJC.(s, y) - 1)dP). (2.7)

Then Z' satisfies:

=f Z( (s,y)- 1)q(ds,dy) (2.8)

and {Z', t > 0} is a martingale with E[Zc] = 1.

Define a new probability measure y' by:

dy -Z on t
d#u

LEMMA 2.1. Under y', p' has the original law of p.

Proof. It suffices to check for test functions 0,E L'(p) and for

UC = exp {jjb(s, y)(dds, dy)} Z

= CXI) {jP s, O(s, y))p(ds, dy)}IZt

that E[Ujf] does not depend on e. Let

exp {jJ(s,((s, y))p(ds, dy)}.
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By thle differentiation rule,

= 1 JY-dZf + jZ--dlY + [Y, Z--jt.

But

j Z, d Y- jJ [exp(qO(s, 0'(s, y))) - lp(ds, dy)

LAYS YT- exp{ O(T, 0' (T, Z))) .1J

A =I Z'-4A'(T, Z) - 1JI,=T.

Hence,

= U -fexp{O(T, 0"(T, Z))j - 1J[A(T, Z) - ljt>T

U.,j- [expf 0(s, Oc(sy))) - 1I[A(s, y) - l1p(ds, dy).

Hence,

U = 1 + Miartingale + jOf jUf- exp f0 S), 9e(s, y))) - 11JA'(s, y)p(ds, dy)

= 1 + Martingale + jof JU., -exp f 0(s, 9C(s, y))} -1A'(s, y)j3(ds, dy)

I + Martingale - 9C'-~x{ (O(, y))) - 1]A'(s, y)g(y) L'dyds.

Thus

f- [ei-S '('Y))-1 0 S ) d((S'Y) dyds

=1 j E U expf 0(s, y)} - lJg(y) dyds

4



by the Jacobian formula. Thus E[Uf ] is independent of e. 01

As a- consequence of Lemma 2.1, we have

E[Zj exp{O(T,Z + eV(T, Z))}] = E[exp{O(T,Z)}J (2.9)

which leads us to the following theorem:

THEOREM 2.2. Suppose G : f0, co] x IRd -- IR is positive, bounded and that its partial
19G(t, Z)

derivative uz exists and is bounded. Then

T (y) V(t,y))q(ds, dy))G(T, Z l G(T, Z) Z)

(2.10)

Proof. Differentiate (2.9) with respect to e, then set e = 0 to obtain

E [+dz o exp{(T, Z + -V(T, Z)))

. [ =0 exp{(TZ + eV(T,Z))) = =0. (2.11)

From (2.8),

d oT/dZ _
dZ Tr  - (A (t,y) - 1)q(dt, dy)

+ Z_, d
+ t + )(t,y)q(dtdy).

From the definition of A'(t, y),

S - 1

and from (2.7),
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! Also,

dl sdA(t,y) & (t\+ ( v(ty)
c=( , V )- t - i(tg y)

Hence

T " v(t, Y)+ v(t,y)) q(dt, dy).

Thus (2.11) becomes

-- E [exppp(T, Z)} ( O-(T, Z)) V(T, Z)]. (2.12)

Let O(T, Z) = log G(T, Z). Then (2.12) becomes (2.10) and the proof is complete. 0

3. Integration by Parts for a General Jump Process.

Consider a single jump process with values in a Lusin space (E, C'). The underlying

probability space is ([0, co] x E, 8([0, oo) x S, y). In this section we sup)ose that for

every t > 0, Ft > 0, and both Ft and At are continuous in t. Furthermore, we assume

that there exists a function a(s), with Q(s) > 0 for all s > 0, such that

At = a(s)ds.

Let u [0, co] x E - IR be a bounded, positive, deterministic function such that

u.,() =0 if s [0, b]

for sonie fixed b E IR. For e > 0, define

A j1( + eu.,(y))A(s, dy)dA,. (3.1)

- 6



Consider the new measure Ac which has a Ldvy system (A, A'). Then (see Elliott (1982))

Ii < it, and if

dA

we have

Lr(t) = j(i +eut(y))A(t,dy)exp { cjus(1))A(s, dy)dA,} (3.2)

Furthermore, if Li = E[Lc(t) J then {L', t > 0) satisfies

L' = 1 + Lc -dM,

= 1 + If -us(y)A(s, dy)q(ds, E), (3.3)

where

Mt =jj u.(y)(s, dy)q(ds, E).

If F[ = ji(It, ooj x E), then

F = Ft exp {- j cus(y))A(s, dy)dA, . (3.4)

Define

0,(t) sup{s : F, >_ F).

Then h,(t) is an increasing function of t, and F,(,) = F, i.e.,

11(10, (t, ool x E) = j,(]t, oo] x E).

Hence if we let 0,(t) = '7't), then under p', 0,(T) has the same distribution as T

under pu. This observation leads us to the following theorem:

7



THEOREM 3.1. Let G(t,z) be a real-valued function defined on [0,oo] x E, which is

bounded and has bounded partial derivative a&G(t, z). Then

E [(JTfU Juy)Ai2 , dy)q(dt , E)) G(T, z)]aG( Z) 1 fT

-E E[& ~)i &()j ut(y)A(t, dy)cxtdt]. (3.5)
at -) JO~ f

Proof. From the above discussion we have

E[G(T, Z)] = Ef[G(O,(T), Z)]

= E[L'G(O,(T), Z)j (3.6)

where E' denotes that expectation is taken with respect to tt'. Differentiate (3.6) with

respect to e, then set E = 0 to obtain

E[LI I G(O,(T), Z) + E[L'j d __]) (3.7)

_E C= L(1 T)C=0j__ L 0.

From (3.2) and (3.3),

d ,== jT fu,(y)A(t, dy)q(dt, E). (3.8)

Also,

i G(O(T),Z) G (TZ) - , (

To evaluate ,(T), note that ) Fo. Hence

0, 0)~ ep ]u(y))A(s, dy)dAs}

dI;;( -), ., ) J -)(s dy) dA. ). ,(3.9)
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On the other laiwd (see Elliott (1982)),

Ft ex (ja(s)ds)

800

so

dO, t) dexp (-0 a(s)ds

Thus

dE a (0t) exp (- f (~s

and

Ell -,)I Ft~)a¢(~ .
de CL-o d IcO (3.10)

From (3.9) and (3.10), we obtain

doe(t) 1 _ 1 [ifs

Now from (3.8) and (3.11), we have (3.5).

4. Integration by Parts and Martingale Representation.

In Section 3, we considered a single jump process with values in a Lusin space. Now

sUDpoS, that Lf 4"1 i .. m i jump time T, the process jumps to a fixed position z, E- E. If
we define A' simply by

A= + eu.,)dA,
9



where u is just a function of the time, which is positive, bounded and vanishes outside

a bounded interval, then the method described in Section 3 would give us the simpler

integration by parts formula:

E[('TdqG()]= -E dG(T) 1(T JTaJ(41

where G is a bounded function defined on [0, oo] with bounded derivative. On the other

hand, if we assume E[G(T)] = 0, then G(T) has the martingale representation (see Elliott

(1982)):

G(T) = j-ydq, (4.2)

where

-, = G(s) - F I G(v)dFt.

If we substitute (4.2) into the left side of (4.1), we have

E/ITU T T

0 d,)(10-yd - E jusru, ^f ~,q

)- E uG (F 1

E: = 00 Is<Tr uq tqads . (4.3)

Now, if we define the Inas. ,,- ,r!y

-r(dt) =de(T) I1 ,,d)

dt a(T)

10
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then the right side of (4.1) is

-E [j iUsosdS,(dt)I = -E Tj jjj lo<,t< usadst(dt)

= E jirfs,c)u ads]
rfdG(T) 1uckd) (4)

= -E j dt (T) 1,<T<o (4.4)

A comparison between (4.3) and (4.4) leads us to the following expression for -:

THIEOREM 4.1. The integrand - that appears in the martingale representation (4.2) is

giv en by:

, -- E[d e T) a'(T) (4.5)dt ,a,(T) Z,<,<

Proof.

E G (T) I "<7,<' .- - -F '"- a(t) IdF

~dt ce(T) i di c(t)

=F-" 0- dG(t) 1, dt a(t) F, a(t) dt

00
= -, F, da(t)

=F-' (- F5 G(s) - f0G(t)dF)

= -G(s) + F 5' j (r)dF,.

11
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Abstract. The optimal control of a partially observed diffusion is discussed when the

control parameter is present in both the drift and diffusion coefficients. Using a differen-

tiation result of Blagovescenskii and Freidlin, and adapting techniques of Bensoussan, a

stochastic minimum principle is obtained.

Key Words. Optimal control, partially observed diffusion, minimum principle.
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1. Introduction

The adjoint process, and related minimum principles, for partially observed stochastic

control problems have been investigated in several recent papers. See, for example, the

works of Bensoussan (Ref. 1), Haussmann (Ref. 2), Baras, Elliott and Kohlmann (Ref. 3)

and Elliott (Ref. 4). In these papers, however, the control variable occurs in only the

drift coefficient. For a fully observed stochastic control problem Bensoussan (Ref. 5) does

consider the case when the control also appears in the diffusion coefficient. This case is

also discussed in (Ref. 6), and, when the optimal control is Markov, an explicit equation

for the adjoint process is derived.

In this paper we consider a state process, which is only partially observed through a

noisy observation process, and for which the control variable is present in both the drift

and diffusion coefficients. By adapting the techniques of Bensoussan (Ref. 5) an adjoint

process is described and a minimum principle obtained for an optimum control. To the

best of our knowledge, this is the first paper that discusses this problem for the partially

observed case when the control appears in both the drift and diffusion terms.

2. Dynamics

Suppose that the state of the system is described by a stochastic differential equation,

dxt= f(t, xt,u)dt + g(t, xt,u)dwt, xt E Rd, XO XO, 0 <t <T. (1)

The control parameter u will take values in a compact, convex subset U of some

Euclidean space Rk.

We shall assume the following:
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(Al) xo E Rd is given.

(A2) f : [0, T] x Rd x U -- Rd is continuous, and continuously differentiable with

respect to x,u.

(A) g: [0, T] x Rd x U -- Rd 0 R" is a continuous, matrix valued function, which is

continuously differentiable with respect to x, u. The columns of g will be denoted

by g(k) for k = 1, 2,..., n.

(A4) There is a constant K such that

(1 + x)-If(t,x,u)l + If,(t,x,u)l + Ifu(t,x,u)l < K

Ig(tx, u)l + Ig,(t, x, u)1 + Ig(tx, xu)1 -- K.

Suppose the observation process is given by

dyt = h(xt)dt + dvt, yt E R m , yo = 0, 0 < t < T. (2)

In the above equations w = (w',..., w") and v = (v',..., vm) are independent Brow-

nian motions. We also assume:

(A5) h : Rd _ R, is Borel measurable, continuously differentiable in x, and for some

constant K1,

lh(x)l + Ih,(x)l < K1.

Let P denote Wiener measure on C([O, T], R") and IL denote Wiener measure on

C([O,T],R m ). Consider the space I = C([O, T], Rn) x C([O,T], Rm ) with coordinate func-

tions (wt, Yt) and define Wiener measure P on n by

P(dw, dy) = P(dw)p(dy).

2
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Definition 2.1. Write {Ft} for the right continuous, complete filtration on C([O, T], R')

generated by Ft° = afw,, s _< t}. Write Y = {Y} for the right continuous complete

filtration on C([O,T],R m ) generated by Y 0 = af{, -Yr, 0 < r < s < t}. The set of

admissible control functions U will be the Y-predictable functions on [0, TJ x C([0, T], R ' )

with values in U. Then

SC L' [0,T]

= {v(t, w'): v(t, w') E L2 ([O, T x (C([0, T], R-)), dt x dp; Rk),

for a.e. t, v(t,.) E L2(C([O,T],Rm),Y,,dyRk)}.

For u E L, write X,",t(x) for the unique strong solution of (1) corresponding to con-

trol u, and with Xu,(x) = x.

Write

Zt(x) = exp ( h(X,(x)dy - h(X'r(x))I'dr) (3)

and define a new probability measure Pu on Q by

dPU
d- = Z 'T(XO).

Then under P', (Xo,,(xo), ye) is a solution of (1) and (2).

Cost. We shall suppose the cost is

T

C(X',T(XO)) + t(rXr(X0 ), ur)dr-.

We suppose

(A6) IC(x)I + IC (x)I + IC,,(x)I < K(1 + fxjq), for some q < oo.
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(A7) E : [0, T] x Rd X U -4 R is Borel measurable and continuously differentiable

in (x, u). Furthermore t and its derivatives in x and u satisfy linear growth

conditions in x.

The expected cost if a control u E U is used is, therefore,

J(u) - Eu [c(xoT(xO))+ I e(r,Xr(XO),Ur)dr.
0

In terms of P, this is

J(u) = E [Z~' T(XO) (C(X.'T(XO)) + j E(r, XO~r(vO), Ur)dr)]

Consider the d + 1 dimensional system given by

t t'
X,,t = x + f(r, X.,r(X), ur)dr + g(r, Xr(X), Ur)dWr

t u u(4)

St = Z + Zsrh(X,r(X))dyr.

Write

Xr= ( u g(r) = (f Xr(X),Ur)

- = + f(r, Xf, r(), u7 )dr ± j(r, r( ), uU)dWr. (5)

4h ()
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As in (Ref. 3) we can assume the Jacobian Dt exists for all s, t, and all w

not in a set of measure zero, and is the solution of

t nm Pt
D", = I+ hf(r, x,(i), u,)Du .dr + gi)(r, ,X,(X), Ur) r (6)S't fu 87DZ ,,kdWr.. (6)

Here I is (d + 1) x (d + 1) identity matrix. In fact, if the coefficients f and § are Ck the

map i -f Xut(i5) is C" - .

Similarly to (Ref. 3) the matrix process H defined by

t n+m
s3t - s,r z sr\I~r=~u - y() ,rP,(),Ur)- U o~) r,..(;) Ur)' )

k=1

m+n

-n / G (7)

exists and H, = (Dxt'.

Remark 2.1. Write 11IU(Po)1t = sup 1XO',(io)j, IlDuilt = sup ID0,,I, I1Hult =
O<s<t 0<3<t

sup JHoj. Then II2( 0)IIT, IIDUIIT, IIHUl'IT are in LP, i< P < oo.
o<s<t

We shall suppose there is al optimal control u* E L, so that J(u*) < J(u) for all

other u E U.

Notation 2.1. We shall write X* for _'u* and D* t for Dgt, etc.

3. Differentiability

Suppose u* E E is an optimal control. Consider any other control v E U. Then for

0 E [0,1]

uo(t) = u*(t) + 0(v(t) - u*(t)) E Ur

and

J(uO) J(u*). (8)
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If the G teaux derivative J'(u*) of J, as a functional on the Hilbert space L' [0,T],

is well defined, differentiating (8) in 0 implies

(J'(u*), v(t) - u*(t)) > 0

for all v E U.

LEMMA 3.1. Suppose v E E is such that u*= u* + Ov E U for 9 E [0, ]. Write X0, 0 )

for the trajectory associated with u*. Then Mt = OXj (oo) exists a.s. and is the

unique solution of the equation

I.t
= I (f(r,Xo,r(o),Ur)Mr + fu(r,X * ,r("o),U*)Vr)dr

n+m+ §X (rO*,ro,/"o),U r)UdWri
i=1 fo

+ >J (i)(r, ~  UXr)VrdW., ,  (9)

i(il

because for n + 1 < i < n + m, (ui) - .

Proof. The result follows from the theorem of Blagovescenskii and Freidlin (Refs. 7-

8) on the differentiability of solutions of stochastic differential equations which depend

on a parameter. In effect the result of (Refs. 7-8) states that, if the coefficients are

differentiable, the equation for the derivative is obtained by differentiation. Considering

the initial condition as a parameter this result gives, in particular, the equation for the

differential or Jacobian as in (6). Fl

LEMMA 3.2. Write

- ft, - .2. A f-1 (t)N - (i(

'I/,t - J k-o,r) J ukv §' J -. J -o,r Yu Ju-.',- r

- /(D0r1i)(r)g,,)(r)vrdr (10)
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where f~ ,?~are as in equation (9). Then Mt = *0't

Proof. By differentiating, we see the product Do, satisfies equation (9). E

LEMMA 3.3.

+ j(r, Xo*r(' 0 ), u*)DO*,,or +l(r, XO,r(XO), U~r)Vr)dr]

where

C(Xo*,T(-;o)) = ZO,T(XO)C(XO,T(XO))

e(r, Xc,.r, U~r) = ZO*r(XO)e(r, XO&,r(XO), Utr).

Proof.

J(u*) = E[( ,To)± ZTxojrXrx)u*(r))dr)]

= E [50(,T("W) + JIT Zo £(r, Xo',r(X 0 ), u;(r))dr + 1 T (r (s)ds) dZO, r]

E E[C(X T("O)) + ~,kr;Ou()d]

So

dJ(u4)j _[C(_f *(o))MT + / -;0~r~),U )r

+ 4(r, Xko*,r(PO), u*)vr)dr]

substituting Mt = bo, the result follows. El
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Consider the right continuous version of the square integrable martingale

Nt = E [Ci(Xot,T(xo))Do,T+ J (r, (o)u*)Ddr ]

where Gt is the right continuous complete a-field on 2, generated by go = Ft° ® YO.

From (Ref. 9) Nt has a martingale representation

Tn+m t

= E [G(Xo,T(o)Do,T +* ~ ( ,r(-o),U)bWrdr] +rm Si=1

where the -4 are r- predictable processes such that

E[f j()2dr] <00.

Write

= -(0,

=tN E [c(fT(O);, T(r,XXOr(r(), UDU'rdV I ge]

THEOREM 3.1.

....... T n T T

adJu)]O= -" i fI ,f(s$vsdS-E ] j'(s))('i(s)v8 d +] o (s)vds

8



Proof. The product rule gives

YO,T = iT1c0 ;s~iuSvd

+ -§ fT(D 'g)(s)v'dW* - jn T (D ")-'g( ')(s)g()(s)v.ds
0 j=1

n+m T T

+ E j ,o, - I(s)(Do,) ,, s
i=1 10i

+ (, )(s), ,( )ds. (12)

However, from Lemma 3.3

do I~ o = [.0,T + f(+() vo, + (13)

Substituting (12) in (13) and using the definition of P, the result follows. E

Remark 3.1. Write 'iT(') = (X,'T(x), ZT(X, z))' for the solution of (4) using

control u*. Then, by uniqueness,

Zt,T(X,z) = zZtT(X,1) (14)

and ZtT(X, 1) is the density given by (3).

LEMMA 3.4.

19zt*X =Z),T(X, 1) (15)

ZOt7(xo, l)ZO,T(X, 1) (16)

and
______T ah(x*,r)0Z;T(x,=1) = ZtT(X, 1)(1 Ox D;,rdvr) (17)

9
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OXI*,
where Dtr =

Proof. (15) is immediate from (14). Now

Zt(X, 1) = 1 + j Ztr(X, 1)h(Xt,r(X))dyr.

Applying the differentiation result of Blagovescenskii and Freidlin (Ref. 7-8) we have

OZ*,T(X,1) f rTOZr(X, 1) Oh
Ox , ax h(r(X))dyr + I Z xl 1) TXt, ,

This equation can be solved by variation of constants to give

Ox, 1 Z*,T(x, 1 T h r(X))DdYr - (X,,r(x))D*,,.. h(X,,(x))dr)

and the result follows from (2). 0]

Notation 3.1. Write Z* for Z ,t(xo,1), Z*,T for ZT(X, 1),

¢(t)= (CX(X,T(XO))D,T + C(XOT(xo))(j] " DrVr zot)

and

+(r) = (ez(')D ,r + £(r) r j Dt," . 'dv,), y'(r)).

Note that the linear growth conditions of f and tx, the integrability properties of D*

and the boundedness of h and h. imply that

is a square integrable martingale.
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LEM .6 ~ z~(O(t) + IT t(r)dr) 9t.(18)

Proof.

pt=E [Ci(XO&,T(-4))bt*,T + j(r,~XO*r(iO), Ur ~t ]

= E [ ( Z4,TCZ (Xo*T(XO ))DtT + ZO~t 19 (Xo*T(XO)), Zt*TC(Xo*,T(XO)))

+ jt(z;,re(r)Dt,r + ZO*,r arx) Zt.TE(r),Z E(r)) dr I t

Substituting (17) thi s is

= . [zT~Z~;,TxO)D;T +C(X',(xo) (jT Dh DdVr) IZ ,C(X ,T(XO))}

+ ft ZO*r IE,(r)D,r +e (r)( j5x- D~,* dv,,), z;,l(r)}d I ]

=E [ZOr,T4'(t) + jT Z71*r(r)dr I (19)

Now

E f ZZ'* [ZT j b r dr -f (j ( d )d trI

However, the last term is a square integrable (P, 9t) mnartingale, so

E fZ, rb(r)dr I gel = Zo*,E [ZTf 0b(r)dr I t

=E [&TjfT 0(r)dr I Gti.

11OI



Substituting in (19).

= z,T (OW(t + j O,(rOdr)I9t

and using Bayes' formula, this is

t

= .E* [9 (t) + j ¢(r)dr I, zi],Z

Definition 3.2. The adjoint process will be the process p defined by

E[zO,, I YY]

- E [ZO*,T q () + j[kr)dr) I Y v {x} ]E[Zo, I Y ]I~ ,lY v {x}]

E*~[O~(s) + j a/4r)dr I Y. V {X}] E[ZO, Y]

-E* [(()+ j iP(r)dr)E[ZO',8, I YJ I Y. V {xl].

As in Bensoussan (Ref. 1), the adjoint process depends on x, which represents the

state of the process at time s. However, x is just a parameter which is integrated out in

the minimum principle of Theorem 3.2.

Returning to the perturbation

U0(t) u*(t) + (v(t) - u*(t))

of the optimal control, we have

dJ(u) >0
dO Lo=0

12

= - - -- • --..



That is

E0jPJu(s)(v(s) - u*s)s- Ej ,)Ui)3((9 - u()

+ u* (s))d.5 + >~~7 ~~*)1.i
0 ( *s)s

for all v E .Now

[f T f - u*())ds- s - u*(s))ds

± u-)VS - u*(8))ds +E t 7',(b*,,) -1(i (5)(v'Gs) - *g)d

i=1 fi U

Therefore, because (20) is true for all v E FQ, we have for a.e. t and a.s. w.

E[P u*((s)) + ~(~sl()s(~ 
- U *(S)) K]>0 ()

for all v E U.

FRom (21)
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=E [E [Z.,T(O(s) + j"~r~r jf(S)(V(S) _ U*(s))

n -T

- ZE[Z.,T(S(s) + ]?(r)dr) g~()yi(()-u()

+ ZO;,T(ZO;,T'eu(S))(V(S) - U*(S))

n

+ ZO.,T Z Z*,V z1i(D 0*)'Ij$u9(s)(v(s) - u*(s)) I Y8]

= E* [(O~(S) + j T O~(r)dr)iu(s)(v(s) - U*(s))

n T.

-Z(O~(s) + ]s ?k(r)dr)jll)()P(sq)(v(S) - u*(s))

+ Zo&,rTei(s)(v(s) - u*(s))

+ ZZ s 0(D,8 u ](s)(v(s) -* u*(Es)),. Y

= E* [ (O(S) + f To (r)dr)E[Zo*., I Y.]fu(s)(v(s) - U*(s))

-Z(0(,S)+ ] ?(r)dr).E[Zo,, I YjY(~(ls(~)- u*(s))

+z*-'i(s)E[zo*,,, .Y](v(s) - u*(s))

+ Z *lj (D5*,,)E[Zo*,, Y8]9$ 1 (s)(v(s) - u*(s)) IY] > 0. (22)

Write

£(s)= E[e(s) I Y,8 V lx}] E[Z, I ,V =~ E* [e(s) IY, V {x}]E[ZI Y,]

E[Z~EZ,8 , I YBV l}

E E[j'(DO's)' I Y9 V {x}] [lSE[Zo',, I Y, V {ax}
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Define the Hamiltonian by

n nH(x ,v,t,p(t)) = ptl.(t,ii,v) - Ept+ )(t,i~-jt. ,v) + t V

THEOREM 3.2. If u* is the optimal control, then a.e. s

E* [2H u(, * s, p(s))(v(s) _- u*(S)) I'.Y ] 0 a.s.

Proof. From (14), ft(s) and §(')(s) (i <- n) are Y, v {x} measurable. Therefore,

0 < E* [(O(,S) + jT(r)dr) E[Z,,3 I Y ]lh(s)(v(s) - u*(S))

+O s) + (r)dr)E[Z.*, I Y IjY)(s)§($)(s)(v(s) - u*(s))

+ ZO*j 1iu(s)E[7z*, I Y8](v(s) - u*(s))

+ Z*-jt(D;,)-'E[z;8, I Y~j~l (s) (v (s) - u *(s)) Y]

= .E*{E* [(O(S) + I ?(r)dr)E[ZO*8, I Y8 Jf,(s)(v(s) - U*(S))

- :((S) + j, 4id)[~ , Y)(sI$1')(s)(v(s) -u*(s))

+ZO*7.'4(s)E[Z&*, I Y ](v(s) - u*(s))

n
+ ~Z l~(D~80.=.E[Z0 *,. I Y,,]j()(s)(v(s) -u*(s))Y 8 V{} Y}

n
= E* [Ps!U(S)(V(S) _ u*(S)) - ZPJsi(S)§Ij)(S)(v(S) - u*(S))

+ *,(s) IY ~ V {x}] , I Y,](v(s) - u*(9))

+ E*[Z;,1.(O 8 1IY V f{x}]E[ZO ,j§(Y.]')(s)(v(s) -u()

TiUu*s)



= E* [PJU(s)(v(sq) - U*(s) - pj~S)(s)ji)(s)(V(S) - U*(s)
i=1

+ E ~(s) I Y, V {x}] E [OZ,s I Y-]

E[Z ), I yY V {x}] .(v(s)- u*(s))

I ~ ~ ~~~+ . ,_ t;,Ir E[%(D ' Ir Y.V {x}I EZ0e [, {xl'g((s)(v(s) - u*(s)) [Y8]

=~~ ~ E* ~ 00"'s)v() - V*() -XI §(')(S()(V(S( (v) - U**())1I Y, V 1x}]
n

= E* [P.!U(S)(v(S) - u*(s)) - ZpJ~')(s)j()()V(s) - U*()

+ ,'(s)(v(s) - u*(s)) + Z 710$(s)(v(s) - u*(s)) I[Y.]
i=1

= E* I [.P, U*Sp(s)V(s) - U*(s) y.

So the result follows. El

References

1. BENSOUSSAN, A., Maximum Principle and Dynamic Programming Approaches of the

Optimal Control of Partially Observed Diffusions, Stochastics, Vol. 9, pp. 169-222,

1983.

2. HAUSSMANN, U.G., The Mazimum Principle for Optimal Control of Diffusions with

Partial Information, SIAM Journal of Control and Optimization, Vol. 25, pp. 341-361,

1987.

3. BARAS, J., ELLIOTT, R.J., and KOHLMANN, M., The Partially Observed Stochastic

Minimum Principle, SIAM Journal of Control (to appear).

4. ELLIOTT, R.J., The Optimal Control of a Stochastic System, SIAM Journal of Control

and Optimization, Vol. 15, pp. 756-778, 1977.

16



5. BENSOUSSAN, A., Lectures on Stochastic Control, Springer-Verlag, Berlin, Germany,

1982.

6. ELLIOTT, R.J., The Optimal Control of Diffusions, University of Alberta, Technical

Report 89.12, 1989.

7. BLAGOVESCENSKII, J.N., and FREIDLIN, M.I., Some Properties of Diffusion Process

Depending on a Parameter, Doklady Akademia Nauk SSSR pg. 138, 1961.

8. BLAGOVESCENSKII, J.N., and FREIDLIN, M.I., Some Properties of DiNusion Process

Depending on a Parameter, Soviet Mathematics, Vol. 2, pp. 633-636, 1961.

9. ELLIOTT, R.J., Stochastic Calculus and Applications, Applications of Mathematics,

Vol. 18, Springer-Verlag, Berlin, Germany, 1982.

17



Filtering and Estimation of a Markov Chain

ROBERT J. ELLIOTT

Department of Statistics and Applied Probability
University of Alberta

Edmonton, Alberta Canada T6G 2G1

Abstract: A finite state Markov chain is considered. Only certain of its jumps, or
alternatively, only the total number of its jumps, are observed. Based on this information
a recursive estimate for the state of the chain is derived. The novel features are the
representation of certain basic martingales associated with the Markov chain, and the
consequent use of martingale calculus and a product technique, which simplify related
formulae and calculations in the book of Br~maud. The Zakai equation is obtained and a
related control problem presented in separated form.

0. Introduction

A finite state, continuous time Markov chain is considered. The state space is taken

to be, without loss of generality, the set of unit vectors S = {ei), ei = (0, 0,... 1, ... ,0)*

of RN+l, thus facilitating the use of );.near algebra. Some basic martingales associated

with the chain are identified and natural filtering problems discussed. These consider,

for example, the estimation of the state of the Markov chain if only the total number of

jumps, or the number of jumps into certain states, are observed. Such formulae can be

obtained by specializing a general result in the book of Bremaud [1]; however, using the

Acknowledgments: Research partially supported by NSERC grant A7964, the Air Force
Office of Scientific Research, United States Air Force, under grant AFOSR-86-0332, and
the U.S. Army Research Office under grant DAAL03-87-0102.
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basic martingales and a product technique, our proofs are different and direct. The related

Zakai equation for the unnormalized conditional distribution is then obtained. It is shown

how this can be used to discuss in a separated form the associated optimal control problem.

Full details of the latter can be found in [3].

1. Markov Chain

For 0 < i < N write ei = (0,..., ,0)* for the i-th unit (column) vector in RN+1

and S = {ei, 0 < i < N}. We consider a finite state space, continuous time Markov chain

{Xt}, t > 0, defined on a probability space (SI, F, P); without loss of generality the state

space of the chain is taken to be S. Write p' = P(Xt = ei). We suppose for some family

of matrices At, that pt "(PO t Nf* satisfies the forward Kolmogorov equation

dpti d = AtPt.(.)

At = (aij(t)), t > 0, is, therefore, the family of Q matrices of the process. We suppose

jai(t)l B for all ij and t > 0. Because At is a Q-matrix

aii(t) = - Zaji(t). (1.2)

isj

Write P(t, s) for the fundamental transition matrix associated with A, so, with I the

(N + 1) x (N + 1) identity matrix

d(D
= At4(ts), 4(s,= I (1.3)

)=-1(t,s)As, '(t,t) =.

2



Suppose {Ft} is the right continuous, complete filtration generated by X. Then for

0 < s < t, if Xs = x E S,

E[Xt I F] = Es,x[XYt

= '(t,S)x.t
LEMMA 1.1. Mt: Xt -X 0 - j ArXr-dr is an {Ft} martingale.

Proof. Suppose 0 < s < t. Then

E[Mt -.vWs I F8] = E[Xt -Xs, - ftArXr-dr I F8]
JS

E[Xt -Xs- ArXrdr IXS],

(because Xr Xr- for each w, except for countably many r),

= .(t, S)XS - - s Arl(r, s)Xsdr

= 0 by (1.3).

COROLLARY 1.2. By variation of constants

Xt =, (,0)-XO + j (ro)-idM)

NOTATION 1.3. ffx = (xo,ci,... ,XN)* E RN+ I , diag x will be the diagonal matrix

with entries from x. For x, y E R N + l write x . y = x*y for their scalar (inner) product.

Consider 0 <i,j < N and i 0 j. Then

(XI ei)edXa (Xs-.. eie. X

= (Xs-.. ei)e(Xs - Xs-)

(xS_ = , x3 =j).

3 -
74



Define the martingale

J := (Xs- ei)edMs.

(Note the integrand is predictable.) Then

M= j ei)e3dXq - (Xs- ei)e AsX,-ds.

Wr'ting Nt(i,j) for the number of jumps of the process X from ei to ej up to time t this

is

= Nt(i,j) - joI(3 = ei)aji(s)ds

= Nt(i,j) - fI(Xs = ei)aj(.s)ds

because X3 = Xs- for each w, except for countably many s. Therefore, for i 5 j

Nt(i,j) = I(Xs = ei)aji(s)ds + Mt3.

For a fixed j, 0 < j < N, write Nt(j) for the number of jumps into state ej up to

time t. Then

N n t
Njj) =(j) Nti, i . f0 IX = a°'sd + - t

t~j j ]IX

where

N

i=1
i#j

Finally, write Nt for the total number of jumps (of any kind) of the process X up to time t.

Then
N N Nt

Nt= ZNt(i) = I(Xs = ei)aji(s)ds + Qt
j=1 i=1j=l
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where Qt is the martingale
n

E MI.
j=1

However, from (1.2)

aii(s) - aji(s)

so

Nt - j = ei)aii(s)ds + Qt. (1.4)

2. Filtering

We now consider the recursive estimation of the state Xt given the number of jumps

which have occured to time t. Other counting processes, such as Nt(i,j), Nt(j) could be

considered as the observation process; for details eee [3].

NOTATION 2.1. Write
N

h(s, Xs) = I(Xs ei)aii (s)

and a(s) for the vector (-a 0 0(s),..., .-aNN~(s))*. Then h(s, Xs) =a(s) Xs. We shall

further abbreviate h(s, Xs) as h(s).

We have, therefore, a SIGNAL process

Xt = X0 + 10 AsX,5ds + Ms (2.1)

and an OBSERVATON proccss

Nt 1jh(s)ds +Qt. (2.2)

5



Write {Yt} for the right continuous complete filtration generated by N, so Yt C Ft

for all t. If {t}, t > 0, is any process write 0 for the Y-optional projection of q.

Then Ot = E[bt I Yt] a.s. Similarly, write ' for the Y-predictable projection of 0. Then

' = E[Ot I Yt ] a.s. From Theorem 6.48 of [2], for almost all w, qt = Ot except for

countably many values of t. Therefore

0 h(r, Xr)dr = io(r, Xr)dr

= j h(r, Xr-)dr.

Write P t = Xt = E[Xt I YtJ so P0 = E[X0 ] = Po say. Now h(r) = a(r). Xr so h(r) =

a(r)'73r.

For the vector h(r)Xr = diag a(r).Xr we have h(r)Xr = diag a(r)'Pr. The innovation

process associated with the observations is

Qt Nt- h d(r)

t
SNt - Jh(r-)dr.

Application of Fubini's theorem shows that Q is a {Yt} martingale. Therefore,

Nt = fo h(r-)dr + Qt. (2.3)

Similarly, Fubini's theorem shows that the process

Mt := Pt - PO - fAsp-ds
is a square integrahe I Y-martingale. Consequently. M can be represented as a stochastic

integral

Mt= jIrdQr.
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Therefore,

E[Xt I Yt = Pt = PO + jfArr dr + j rd r. (2.4)

The problem now is to find an explicit from for 7.

THEOREM 2.2.

= I(P(r-). a(r) 3 0)(P(r-). a(r)) - 1{diag a(r) - (r-)

- (P(r-) a(r))p(r-) + Arp(r-)}.

Proof. The product ptNt is calculated two ways. First considert
XtNt = Xr_(dQr + h(r-)dr)

+ jNr-(ArXr-dr + dMr) + [X,N]t.

Now X and N jump at the same times, at which AN o1, s

[X,NIt = AXrtX Nr = E AXr = Xt - X0

0<r<t O<r<t

tt

=10tArXr~dr+M.

That is, (X, N)t = j ArX,-dr so

XtNt = (Xr-h(r-) + Nr-ArXr- + ArXr-)dr + it (2.5)

where 1L is an {Ft} martingale.

Taking the Y-optional projection of each side of (2.5)

PtNt = (diag a(r) Pr- + Nr-Arpr- + Arr-)dr + Ht (2.6)

7



where H1 is a square-integrable Y martingale. However, from (2.3) and (2.4)

Pt Nt= j0ot r-h(r-)dr + fotpr-dQ, + fotArpr-Nr-dr

+ J-rNr d + [fi, Nit.

Now

A, Nt = Z: A ArNr y dN,
O<r<t O<r<t

= f7rdNr = f rd r + trh(r-)dr.

Therefore,

PtNt = j (fir-h(r-) + Arlr-Nr- + 7 rh(r-))dr + Ht, (2.7)

where H 2 is a square-integrable Y martingale. The bounded variation process in (2.6) and

(2.7) must be equal, so

diag a(r) Pr- + Nr-ArPr- + ArPr-

=/3r-h(r-) + Ar.r-Nr- + yrh(r-).

Recalling h(r-) = a(r) . Pr- we have

7r = I(p.a$O)(a(r) " P(r-))- {diag a(r) - r -

- (a(r) . P(r-))P(r-) + Ar/3(r-)}. (2.8)

Note for any set B E Ys

E[IBjdNr] E [IBjh(r)dr]

8



so yr can be taken to be 0 on any set where h(r-) = 0.

REMARKS 2.3. We have, therefore, that Pt = E[Xt I Yt] is given by the equation

Pt = po + JA,.r.d. + jow(dNr - a(r). i- P.dr)

where 7r is given by (2.8). The disadvantage of this equation is that -Y involves the inverse

factor (a(r) _

3. The Zakai Equation

Suppose there is a constant k > 0 such that -aii(r) > k for all i and r > 0. Then

h(r) - 1 = (a(r). Xr) - 1 < k- 1 for all r > 0. Define the martingale A by

At 1+10 Ar_(h(r-) - 1 - 1)dQr (3.1)

and introduce a new probability measure P1 on (92, F) by

Then it can be shown that under P1 the process Nt is a standard Poisson process, and in

particular Qt = Nt - t is a martingale. Conversely we can define the (P1 , F) martingale

+ =1 + j r_(h(r-) - 1)dQr. (3.2)

Then At~t = 1. To obtain the Zakai equation we take P 1 as the reference probability

measure and compute expectations under P1 . Write II(Aj) for the Y-optional projection

of A under P1 . Then for each t > 0, rI(Xt) = Ei(t I Yt] a.s. It can be shown that

9
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0t
II(At) = 1 +0 ArdQr where Ar = H(Ar)(h(r-)- 1). By Baye's rule, for any Ft-

measurable random variable 0

t = E[O I Yt] = Ei[At¢ I Yt]/EI[At I Yt].

Write a(q)t = EI[AtO I Yt]. Thena(Xt) = El[AtXt I YtI = qt, say, and a(1) = II(At).

Now qt is an unnormalized conditional distribution of Xt given Yt, because ft = E[Xt I

Yt] = qt/fl(At). Calculating the product Il(At)pt we obtain the Zakai equation for qt:

qt = PO + Arqr-dr

+ I (diag a(r) - I + Ar)qr.dQ,. (3.3)

This equation is linear in q and the inverse (a -)-1 has disappeared.

4. Optimal Control

The optimal contro] of a Markov chain when, say, only the total number of jumps is

observed, can be discussed using the Zakai equation (3.3). We see below that this presents

the problem in a separated form. We suppose the family of Q-matrix generators At(u)

depend on a control parameter u E U (a compact, convex subset of some Rk). Write

a(s,u) = (-aoo(s,u),...,aNN(S,u))*

and h(s, u) = a(s, u) . X where the state process X' is now described by dynarni-s

X4 =Xu + Ar(u)X~rLdr + M'

10



for 0 < t < T. The set V of admissible controls is the set of {Yt}-predictable processes

with values in U.

Write P1 for the probability measure under which Nt is a standard Poisson process.

Then Qt = Nt - t is a martingale under P1. For each u E U we define

At = 1 + ] Ar(h(r-,u) - 1)dr.

II(At ) is the Y-optional projection of A under P1 and with

=(x') = qt(u) = E tXt I Ytj

we have as in Section 3 that the unnormalized distribution satisfies:

qt(u) = II(W)p t(u).

Write Bt(u) = (diag a(t, u)-I+At(u)). Then for each u E F the unnormalized distribution

is given by the Zakai equation

qt(u) = p0 + joAr(u)qr-(u)du + joBr(u)qri(u)Qr.

COST: A function on the state space S is represented by a vector

f = (VO,...,eN)* E RN+.

We consider for simplicitv just a terminal cost so the control problem is that of choosing

71" E U so the expected cost

J(u) = E[( ,'X)]

11
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is minimized. Now

J(u) = El (txu)j

= El[(e, E["TX I Yt])1

= El [(E, q].

The control problem has, therefore, been formulated in separated form: find u E U which

minimizes

J(u) = El[(e, q u)]

where for 0 < t < T, q is given by

qt(u) = P0 + J0 Ar(u)qr-(u)dr + joBr(u)qr.(u)dQr.

Under P1 , Qt = Nt - t is a (P1 , Y) martingale. A novel feature of this partially observed

control problem is that there is correlation between the state and observation processes

which leads to the presence of the control u in the "diffusion" coefficient B.

A minimum principle, and an equation for the adjoint process, for this problem are

derived in [3].
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Abstract. A control problem is considered where the coefficients of the linear dynamics

are functions of a noisily observed Markov chain. The approximation introduced is to

consider these coefficients as functions of the filtered estimate of the state of the chain;

this gives rise to a finite dimensional conditional Kalman filter. A minimum principle and

a new equation for an adjoint process are obtained.

Key Words. Hybrid control, filtering, minimum principle, adjoint process, separation

principle.
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1. INTRODUCTION.

The filtering problem, where the state and observation processes are linear equations

with Gaussian noise, has as its solution the celebrated result of Kalman. For the related

partially observed, linear quadratic control problem the separation principle applies, and

the optimal control can be described explicitly as a function of the filtered state estimate.

Suppose, however, the coefficients in the linear dynamics of the state process are

functions of a noisily observed Markov chain. Both the filtering problem, and related

quadratic control problem, are now nonlinear, and explicit solutions are either difficult

to find or of little practical use. The approximation proposed below is to consider the

coefficients in the linear dynamics to be functions of the filtered estimate of the Markov

chain. In this way a conditional Kalman filter can be written down. These dynamics lead

us to consid, r in Section 3 a conditionally linear, Gaussian control problem. By adapting

techniques of Bensoussan, Ref. 1, a minimum principle and a new equation for the adjoint

process are obtained.

Other work discussing similar situations and approximations includes the papers,

Refs. 2-6 and the recent book, Ref. 7 by Mariton.

2. DYNAMICS.

Consider a system whose state is described by two quantities, a vector x E Rd and a

component a which can take a finite number of values from a set S = {Jia2,.

(x can be thought of as describing the location, velocity etc., of an object; o might then

describe its orientation or some other operating characteristic.)
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Let €i be the function on S described by

j1 if a = O'i

0 if 0' 5 ai

and write 0(o) for the column vector (01(u),..., qN(U))'. € is, therefore, a bijection onto

the set of unit column vectors {ei, ... ,eN} of RN, where ei = (0,... ,0, 1,0,... 0)'.

If a evolves as a Markov process on S we can, without loss of generality, consider the

corresponding process described by q evolving on the set {ei,..., eN}. Write Ot for the

state of this process at time t and Pt = E[t]. Suppose the generator of the Markov chain

is the Q matrix Q(t) = (qi,(t)), 1 < iJ N, so that pt satisfies the forward equation

dt- Q(t)pt. (1)
dt

It follows from (1) that on the family of c-fields generated by Ot the process 11t is a

martingale, where

Mt = €t - O0 - jQ(s)¢sds. (2)

Suppose 0 is observed only through the noisy process z, where

zt= jr(s,¢0)ds + vt. (3)

Here v is a Brownian motion independent of M. Write {Zt} for the right continuous

complete family of c-fields generated by z and qt for the Z-optional projection of 0, so

that

q 1 = Z.] a.s,

(For a discussion of optional projections see Elliott [4). Optional projectionb take care of

measurability in both t and w; conditional expectations only concern measurability in w.)
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Write A(s) for the vector and diag A(s) for the diagonal matrix

with diagonal A(s).

With an innovation process ft given by dflt = dzt - (A(t), t)dt it is shown in, for

example Ref. 8, that the equation for the filtered estimate q is

Ot = 0o + j Q(s)Sds + j(diag A(s) - (A(s),q)I)qsdf, . (4)

Here (,) denotes the inner product in RN and I is the N x N identity matrix. Equation

(4) provides a recursive expression for the best least squares estimate € of 0 given the

observations z.

Suppose now the x component of the state is described by the equation

dxt = A(qt)xidt + ptd~t + B(t)dwt. (5)

Here x E Rd, Wt = (wI,..., w') is an n-dimensional Brownian motion independent of M

and u, and A(¢t), B(Ot) and pt are, respectively, d x d, d x n and d x N matrices. Note

that

N
A(Ot) = A(ei) (ei,,ot)

N

B(Ot) = B(ei)ei, Ot).

Suppose the x process is observed through the observations of y, where

dyt = Hxtdt + Gdf3t. (6)

Here y E RP, Ot = (fl,..., f ') is an m-dimer iional Brownian motion independent of M,

i' and w and H, (resp. G), is a p x d (resp. - , oingular p x m) matrix.
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Now the y observations also provide information about €, so that altogether we have

the states x and q given by (5) and

qt = 00 + Q(s)¢,ds + Mt, (7)

with observations given by (3) and (6). Write {Y,} for the right continuous, complete

filtration generated by y and z, and denote by a bar the Y-optional projection of a process

so that, for example,

,, = E[Ot I Y] a.s.

Define the H-innovation processes v*, ,3* by

dv* = dzt - (A(t), t)dt

df t3 = G-1(dyt - HIvtdt).

For vectors x = (xi,... ,m)' E R"' and y = (Y .. , yn)' E R', x ® y will denote their

tensor product, which can be identified with the m x n matrix (aj), aij = xiYj. Then

the filtered estimate o: (t is given by

d =-7t (A(ttxt dt + (Pt Q~t)dt+

+((Xi, qoj)' 0 (Hxt, (A~t), q5t)) - (,V, t) ® (H-;c1 , (A(t), e) (G 0) (t3)

This is a nonlinear equation. However, the approximation we shall make is to suppose

that most of our information about 0 comes from the observations of z and that we can

replace 0 by € in (5), where € is given by (4). Note that q is independent of w and P6. We

can, therefore, state the following result:
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PROPOSITION 2.1. Suppose the state xt is approximated by .t where

dit = A(t).tdt + ptdt + B(t)dwt. (8)

Here q5 is given by (4). Suppose , is observed through the process where

dft = Ht dt + Gdflt. (9)

Write {Y} for the right continuous, conplete filtration generated by g and & for the

Y-optional projection of x, so that t = Etxt I Yt] a.s. Then

dit = A(ebt),tdt + ptdqSt + PIH(GG')-'d3t (10)

io = Exo,

where

G .dft = dy, - H.,tdt (11)

and Pt is the matrix solution of the Riccati equation

Pt = B(qt)B(qh)' - PtH'(GG')-'HPt + A(qt)Pt + PtA(Vt), (12)

P0 = coy X0.

Proof. Because is independent of w and B, Ot(w) appears as a parameter in (10),

so the usual Kalman ,ilter forrmula applies. Equations (4 ) k1), 1l) a (1-) th

give a finite dimensional filter for xt, which is a conditionally Gaussian random variable

given € and Yt.

7



Note that

N

A(qj) =/A(ei)(ei, t

N

B(4) = B(ei)(ei,, t).

REMARKS 2.3.

d(;, - = (A(t)xt - A(O,) ,)dt

+ ptQ,(qt - )dt + (x O--Hx - 0 H.)G-'dft

+ (x 0 (A(t), qt) - 0 (A(t), t))dvt

+ PtH(GG')-d,.

Therefore, with tr denoting the trace of a matrix)

d(.,t- t)2 = 2(.t - ,t)d(,t-:it)

+ tr (-x7x - . 0 H.)(G'G)-' (Hx D x - H )t

+ tr( At), ) X - (A(t), j) )(X 0 (A(t), ) & 0 (A(t), , t))dt

+ trPtH(GG')-2 H'P . dt

+ trPtH(GG')- i . G'(-x7T-x - : 0 H7)dt.

Taking expectations the martingale terms disappear and, under integrability or bounded-

ness conditions on the coefficient matrices, an estimate of order o(t) for E(t - ct)2 Can

be obtained. However, this does not appear too useful.
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3. HYBRID CONTROL.

Suppose the state equation for x now contains a control term, so that

dxt = A(Ot)xtdt + ptdt + Ctu(t)dt + B(qt)dwt. (13)

The observation process is again y, where

dyt = Hxtdt + Gdflt. (14)

Assume the control parameter u takes values in some space Rk and the admissible control

functions are those which are predictable with respect to the right continuous, complete

filtration generated by y and 4. Ct is a d x k matrix.

Suppose the control {ut} is to be chosen to minimize the cost

J(u) = K (1Dtx, + ufRtu,)dt + XITFXT]. (15)

Here Dt, Rt and F are matrices of appropriate dimensions and Rt is non-singular. Then

(7), (3), (13), (14) and (15) describe a nonlinear partially observed stochastic control

problem whose solution is in general difficult. To obtain a related completely observed

problem the approximation we propose is that Ot is replaced by its filtered estimate t in

(13) giving a process i, where

d t = A(. t)ztdt + ptdt + Ctu(t)dt + B( t)dwt. (16)

The observation process is now , where

dgh =IH itdt + G. dt (17)

9



and the admissible controls are the predictable functions with respect to the right contin-

uous, complete filtrations generated by g and z.

The cost is taken to be

J(u) = E (i'tD, ,i + u'Rtut)dt + T;F (18)

Equations (16), (17) and (18) describe a partially oLserved, linear, quadratic Gaussian

control problem which is parametrized by qt, a process which is independent of w and /.

However, we cannot apply the separation principle, as in Ref. 9, because the coefficients in

(16) are functions of q. The usual form of the separation principle involves the solution of

a Riccati equation solved backwards from the final time T, and we do not know the future

values of 0. We, therefore, proceed as follows to derive a minimum principle satisfied by

an optimal control. We are in effect considering a completely observed optimal control

problem with state variables € and -, where q is given by

,= Oo + f Q(s)O(s)ds + jf (s) (s)d6i (19)

and

t = mO + A(O,),ds + pd s + Csusds + jPH(GG')- d . (20)

Here II(s) = diag A(s) - (A(s),S)I and mo = Eo. Note from (12) that the co-

variance Pt depends on q In terms of i and P the cost corresponding to control {ut} is,

(see Ref. 9),

J(u) = E [ f tDt t + u'Rtut)dt

+ i'F:T + tr(PtD,)dt + tr(PTF)].

10



The last two terms do not depend on the control, so we shall consider a problem with

dynamics given by (19) and (20), and a cost corresponding to a control u given by

T

Write {Yt } for the right continuous filtration generated by and z. Write L, [0, T] =

{u(t,w) E L2 ([0,T] x Q; dt x dP, Rk) such that for a.e. t, u(t,.) E L2( ,t,P, Rk).

Assume U is a compact, convex subset of Rk. Then the set of admissible controls is the

set

U = {u E L 2[0,T] : u(t,w) E U a.e. a.s.}.

Suppose there is an optimal control u*. We shall consider perturbations of u* of the form

ue(t) = u*(t) + (v(t) - u*(t)) where v is any other admissible control and 9 E [0, 1]. Then

J(ue) > J(u*).

Following and simplifying techniques of Bensoussan, Ref. 1, our minimum principle is

obtained by investigating the Gateaux derivative of J as a functional on the Hilbert space

L (0, TI. Write i* for the trajectory corresponding to the optimal u*. Then

di* = A(ot)-;dt + ptdot + Ctu~dt + PtH(GG')-dft.

Given any sample path 0, Ot will be considered as a time varying parameter. Write

@(4, t, s) for the matrix solution of the equation

d ((,t, s) = A(k,)4(kt,s)dt
dt

with initial condition -1,(0, s, s) = I.
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LEMMA 3.1. Suppose v E L is such that u* = u* + Ov E U for 0 E [0, a]. Write 8 for

the solution of (20) associated with u . Then Ot = exists a.s. and

O, = 1( ,t,0) 1 ( ,so)-Cvs. (22)

Proof.

= xo + JtA(q,)5'ds + ] psdq s + + Ov,)ds +] P8 H(GG') - 'd. (23)

From the result of Blagovescenskii and Freidlin, Ref. 10, on the differentiability of solutions

of stochastic differential equations with respect to a parameter (23) can be differentiated

to give

t= tA( ,)zods + Cvds. (24)
0 Jo

The solution of (24) is then given by (22). LI

NOTATION 3.2. Consider the martingale

Mt E [2 jT i*ID,,)( s, 0) ds: + 2: *Fcb~~ T, 0) Fi

and write

t= M, - 2 *'D(D ( ( s, 0)ds

Pt = .(4,s,O)- (25)

770t= 4 (, s,0) Csv , ds.

Then there are square integrable processes -Y and A such that the martingale M has a

representation as a stochastic integral

Mt = E [2 f TD (,s,0)ds + 2i*Fi(, T, 0) + 7 +sd fs ,dvs.

12



PROPOSITION 3.3.

dJ(ug) 190= E [JT(PC"VS + 2u'Rsv,,ds1
d9 e

Proof.

J(u*) = E[T. ,,, + u *1Rus + TF].

Therefore, differentiating we see

dJ(u~l) I T
d911_ = E[2] ( 'Ds + u'R~v,)ds + 2 *iFZTj (26)

Using the above notation

Ot= '(qSt, O)770'

6T= 2 *F,OT, 0)

so

6Tqo,T = 2.*FOhT

- Ts( s, )'Cvsds - *'D'I(b .s, O)?7o,,8ds

+ fT 37'd~ + T T~of,

Substituting in (26)

dJ9) = E [T?7,T + 2 jT ,,S ( , s, O)?7o, 8d + 2ju1Rvsds]

= E] 'A(&os)-'cvds+ 2j u3Rvsds]

= E [fT (sv,+ 2u*R,,v,)ds]
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Now take v to be of the form v - u* so that uo = u* + 0(v - u*) E E. Applying

proposition 3.3 to J(uo) we have the following result.

COROLLARY 3.4. The optimal control satisfies the minimum principle

p3 C~u* + 2u*'R~u* = min(p8 Cv + 2u'R~v) a.e. a.s.
vEU

Proof. u* is optimal so dJug > 0, that is for any other admissible control v
doV I0=0

E [iT(pCs(u - vS) + 2u'R,(u - v,))ds] > 0.

v can equal u* except on an arbitrary set of the form A x [s, s + h], A E F,. Therefore,

a.e. dt and a.s. dP,

p3C8(u* - v,) + 2u*'R,(u* - v,) > 0,

where the adjoint variable p is given by (25). 0

REMARKS 3.5. From Ref. 11 we know the optimal control u* is feedback, in the sense

that at time t it is a function of the states it and qt. However, to avoid derivatives of u*

we suppose u* always follows the trajectories of i* and , even if these trajectories are

perturbed. By the Markov property we, therefore, have that Pt is a function of x = it and

= . Writing D = 4( ,t,0) and y = 2 i *'D, ((,s,0)ds we have that I(t,x,y, ) =

p(x, 4b) " + y = Mt, a martingale.

If we write down the Ito expansion of I the sum of the terms integrated with respect

to time must be zero. After division by 4 we have the following equation satisfied by the

adjoint process p = p(t, x, 0).

14



PROPOSITION 3.6. Denote the Hessian of p with respect to x (resp. ~)by -4 (resp.

and write

1% = ptH(GG')-' + pj1l(t) ~t

At= Hi(t)q t.

and tr(r' P r) (resp. tr(A' ~ At)) for the vector with components tr(r, 2A rt)

Then

ap+ p A(q j) + LP (A(qt4it + ptQqt + Ctu*)

ap 1 2 P 92i 1
+ _. t+ tr(r, r-j P~+ tr(A/ - A) 0

with terminal condition p(T, x, qS) = 2xF.
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THE ADJOINT PROCESS FOR A
PARTIALLY OBSERVED MARKOV CHAIN

Robert J. Elliott
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1. Introduction

A finite state space Markov chain is considered. Without loss of generality its state

space can be taken to be the set of unit basis vectors of RN. On the basis of knowing only

the total number of jumps a control problem is discussed in 'separated' form. That is,

the Zakai equation for its unnormalized distribution is taken as describing the state of the

process. This is a linear, vector equation driven by a standard Poisson process in which the

control variable also appears in the 'diffusion' coefficient multiplying the noise term. The

controls, similar to those employed by Bismut [2 and Kushner [41, are in the 'stochastic

open loop' form. By adapting techniques of Bensoussan [1] and calculating a Gateaux

derivative, the minimum principle satisfied by an optimal control is obtained. Finally,

when the optimal control is Markov, the integrand in the martingale representation can

be obtained explicitly, and new forward and backward equations satisfied by the adjoint

process derived. A full treatment can be found in [3].

2. Dynamics

Without loss of generality, the state space of a finite state Markov chain can be

identified with the set S = {ei} of unit vectors ei = (0,0,..., 1,..., 0)* of RN. Assume,

therefore, that Xt, t > 0, is a Markov process defined on a probability space (l, F,P)

with state space S = {el,..., eN}. Write pt = P(Xt = ei), 1 < i < N, and suppose for

Acknowledgments: Research partially supported by NSERC grant A7964, the Air Force

Office of Scientific Research United States Air Force, under contract AFOSR-86-0332, and

the U.S. Army Research Office under contract DAAL03-87-0102.
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some family of matrices At(u) that pt = (pt,...,pN), satisfies the forward Kolmogorov

equation
dPt - At(u)pt.
dt

Here U, the set of control values, is a compact convex subset of some Euclidean space Rk.

Take 0 < t < T and suppose At(u) is measurable on [0, T] x U and continuously *fferen-

tiable in u.

The set U of admissible control functions is the set of U valued functions which depend

only on the knowledge of previous jump times. That is, if T1 , T2 ,... are the jump times

of X and Tn < t < T+l, then u E U is a function only if T1 ,...,Tn and t. It is easily

checked that the process Mtu is a martingale, where

M? :=0X - X 0 - Ar(u)X.dr.

Write Nt for the total number of jumps to time t. We shall suppose our only knowledge

of the Markov chain X comes from observing N. Y = {1} is the right continuous,

complete filtration generated by N. For u E U set

a(s, u) = (-a 1 (s, u),..., -aNN(s, u))*

and h(s,u) = a(s,u) .Xs.

The hat-will denote the Y-optional projection, so that fis(u) := E[Xs I Y] a.s.

and h(s, u) = a(s, u) -Ps(U). Now N can be written

Nt = j h(su)ds +Qu = j h(s,u)ds +

where QU is a (Y, P) martingale.

Note that because Xu and N jump at the same time the noises in the state process

Xu and observation process N are correlated.

Cost: A real function on the state space S = {e,...,en} is given by a vector

V1 = .,... , N)" Write ( , x) = * x for the inner product on RN.

The control problem will be that of choosing u E U so the expected cost J(u) =

E[(e, X)] is minimized.
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Suppose there is a k > 0 such that -aii(s, u) > k for all i, all s E [0, T and all u E U.

Then h(s,u) 1  (a(s,u).. Xu) - 1 < k 1 . For u E _. consider the martingale Au defined
by

by = 1 + j Au(h(r-, u) - 1 - 1)dQu.

Then, consider the new measure Pu on (2, F) given by E[--P IFt] = A'. It can then be

shown that under Pu the process Nt is a standard Poisson process; in particular -Ot = Nt -t

is a martingale.

The inverse of A' is the process Xtt, a (Pu, F) martingale given by the equation

= 1 + J0Kru(h(.s-, u) - 1)d .

Write H(Xt) for the Y-optional projection of Au under measure Pu and consider the

unnormalized conditional expectation of X given by qt(u):= Eu[- tXt I Yt]. From Bayes'

rule qt(u) = II(Tt)pt(u), and with Bt(u) = (diag(a(t, u)) + At(u) - I), qt(u) is given by

the Zakai equation

qt(u) = P0 + j A.(u)qr_(u)dr + iBr(u)q_(u)dr.

Furthermore, the cost can be written

J(u) = Eu qf. (1)

The partially observed control problem has, therefore, been formulated in separated form:

find u E U which minimizes J(u) given by (1), where q is given by the Zakai equation in

which Qt = Nt - t and Nt is a standard Poisson process.

3. Minimum Principle

Suppose, therefore, P1 is a probability measure under which N is a standard Poisson

process, and for u E U consider qt(u) E R N defined by

qt(u) = PO+ Ar(u)qr-(u)dr + Br(u)qr-(u)dQr.
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The cost corresponding to u E U is J(u) = El f(e, 4~)].

For u- E -U write -P(t, s) for the solution of the matrix equation

dibu(t, s) = At(u)Iu (t-, s)dt + Bt(u)( u(t-, s)(dNt - dt)

with initial condition Pu (s, s) = L.

Furthermore, for u E UE consider the matrix IP'(t, s) defined by

41u(t, s) = I - j0 IPu(r-, s)Ar(UI'dr - jflU r....., s)Br(u)dQr

ft
+ ]0 IPu(r-, s)Br'(u)(I ± Br(u))f'dNr.

Then it is easily checked that

Suppose there is an optimal control u* E U. Write q* for qU , V for -lb'*, etc. Consider

any other control v E U. Then for 9 E [0, 11,

u0 (t) = u*(t) + 9(v(t) - u(t)) E UI.

Because U C Rk is compact, the set U of admissible controls can be considered as a

subset of the Hilbert space

H-=JL[92xf0, T] : RkI.

Now

JAuO) ! J(u*). (2)

Therefore, if the Giteaux derivative JI(u*) of J, as a functional on the Hilbert space H,

is well defined, differentiating (2) in 9, and evaluating at 9 0, implies

V' (u*), V(t) - u*() 0

for all v EU.
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LEMMA 3.1. Suppose v E U is such that u-- u*-- v E f for 0 E [0, a]. Write qt(O) for

the solution qt(u*) of the Zakai equation. Then zt = 3 =0 exists and is the unique

solution of the equation

Zt = I~t (9(r, U*)Vrqr-dr + JA(u*)rdr
0 OB , • _ 0

+0 j~( r )v*r +0 jB(u*)ZdQ (3)

Proof.

qt(O) = Po + JAr(U* + Ov)qr-(O)dr

+ j Br(u* + Ov)qr-(O)Qr..

The stochastic integrals are defined pathwise, so differentiating under the integrals gives

the result. Comparing (3) and the equation for VU we have the following result by variation

of constants.

LEMMA 3.2. Write

70 t ,OA u* \

t= j*(-,0) (,9A(r, u*))vrqdr

+ joT' *( - 0) ((,B ,u*))_Vrq -Qr

t%*r,0)(I + Br(u*))-lBr(u*) (--r ))rr..dr 4• -, U (4)

Jo

Then zt = *(t, 0)70,t.

Proolf Using the differentiation rule

fot *  fotd *lff(tO~lOt= • d?7 + .t-*l [ff,ti~t.

Because 4 * IQ = I, therefore

o*(t O A),t = j r, U vrqr.dr

5



-j'( + Br(U*))i'B(u*) (OIB(,r U*)) vrqdNr

+ JtA(u)Ib*(r- 0 )7io r-dr + B(u)41*(r- 0)770,.r..dQi.

+ jBr(u)(" (ru*)) vrq*dNV

- JB(u)(I +Br(u*)fBr(u*) (Thu(r u*) vrqr*-dAr.

Now the dN integrals sum to 0, showing that 4,*q satisfies the same equation (4) as z.

Consequently, by uniqueness, the result follows.

COROLLARY 3.3. Vd( *) l[1VT )7,~

Proof. J(u*) = El [(E, qt(0))]. The result follows from lemmas 3.1 and 3.2.

NOTATION 3.4. Write 'V(T, 0)' for the transpose of -1*(T, 0) and consider the square

integrable, vector martingale

Mt := El [-*(T,o0)'e IYfI.

Then Mt has a representation as a stochastic integral

Mt = El [( * (T, 0)leI + j0 -rdQr

where -1 is a predictable ftN+l valued process such that

TTnd^r 1i Mrkov hypothesis -j will1 be explicitly determined below.

DEFINITION 3.5. The adjoint process is

Pt O

6



THEOREM 3.6.

dJ~u) 1=f jTE[(pr.-, {(j (r,u*)(I±Br(u*)f1Dr(u*)((,u)}vq.

+ (-yr, i*(r-,O)(I +Br(u*)Y 1 ('B(ru*))v ql...)]dr. (5)

Proof. First note that

(MTTOT) 1  (Mr,"P*(r -,o ( 2 i(r, u*)vrq*-)dr

+ fT (M1 ., *(r... ) (2TU(r)). ) dQr

- 1oT (Mr-, P~*(r-, 0)(I + Br(-a*)Yl

XBr(u*) ("B(r, u*))qdr

+ jT rT O r d r

+ JT (,,rliI*(r-,O) (' 2 (r,u*)) vrq )

-o jT ( 7 r q*(r-., 0)(I + Br(u*))>1

X Br(u*) (B~(r u*))Vrqr-) dNr.(6

Taking expectations under P, we have
dJ(uo)1  l(,*T0?o)

= F1 [("]*(T, V)', 170,T)I = El [(MWT, n1,T)I.

Combining the last two terms in (6) and using the fact that Nt - t is a P1 martingale, this

is
= TE[P- ('~(r,u*))vrqr..)

(Pr-, (I+ Br(u*)) lB ,(u*) ( arB *) r~ .

+(7tr, I!(r- 0) (1 + Br (u*)f ( B (r, U*)) r~..) r

7



0

Now consider perturbations of u* of the form u0 (t) = u*(t)+9(vQ)-~u't)) for 9 EJO, 1]

and any v E U. Then as noted above

dJ(u0 ) =(JI(u*), V(t) - U*(t)) > 0.
dO 10=0

Expression (5) is, therefore, true when v is replaced by v - u* for any v E E~, and we can

deduce the following minimium. principle.

THEOREM 3.7. Suppose u"* E U is an optimal control. Then a.s. in w and a.e. in t

(Pr- { ((,U*) - (I + Br(u*)f1ru)~ru) }(vU r - *q-

+ (r~ I~*r,0)(I +Br(u*)rl- (arB *)(r- fq)>0 7

4. The Adjoint Process

The process p is the adjoint process. However, (7) also contains the integrand -y. In

this section we shall obtain a more explicit expression fory -in the case when u* is Markov,

and also derive forward and backward equations satisfied by p.

ASSUMPTION 4.1. The optimal control u* is a Markov, feedback control. That is, u*

(0,T] x RN+l --4 U so that u*(S,q,*-) E U.

LEMMA 4.2. Write 8 for the predictable '"integrand" such that A pt pt - pt StL\Nt,

i. e., pt = P- + StL .Nt. Ebuthermore, write qt q, Bt-(u* (t-, q)) =B* (qt-.) = *()

and Bt(u'(t, qt)) = B*(qt). Then

St(q) = (I + B*((I + B*(q))q))lp-((I + B*(q)fri)- pt-(q). (8)

Proof. Let us examine what happens if there is a jump at time t; that is, suppose

ANt 1. Then qt = (I + B*(q))q. By the Markov property and from Definition 3.5,

Pt = E[D* (t, Tk) (I + BT',(u*)) ... D* (T7,TN)e I Yt]

-Pt(qt) = pt((I + B*(q))q)

(I (+ B*q)-p-( + B*(q))q),

and the result follows. Heuristically, the integrand 8 assumes there is a jump at t; the

question of whether there is a jump is determidned by the factor ANt.
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THEOREM 4.3. Under Assumption 4.1 and with St given by (8)

- r = (~ - 0)((I + B3(u*))Sr + B(u*)p.). (9)

Proof. (b*(t, 0)'pj =M= El[?* (TO)'tIYt] = Ei[D* (T, o)'e] +jrQr. However,

if u* is Markov the- process q* is Markov, and, writing q = *,b= b*(t, 0),

El [-I)*(T,oy'e i Y11 = Elp~ [V,* (T, t)' q7 (b

- = V'E1 [,P* (T, t)'e qi I

Consequently, pt = El [(P (T, t)'.P I q] is a function only of q, so by the differentiation rule:

pt a~ t r
Pt PO +]f (Aqr-dr + Br-.d~r) +]f - r

+ , (Pr -Pr -
O<r<t 0  ,

PO +J [-j-(Aqr- - Bqr..)+ br dr +jI rdFr.

Evaluating the producc:

Mt = (t )t

= PO+ V r-,0)' [OPr- (Aqr...- Bqr-..)+ 8r] dr

+ ft V 0-,)/ 8 PT dr + ft k*(-O8rQr

+f I, I, (r-, 0) Af pr-dr + 10~ tV(r-, 0) B P-d-

+ j0 V (r-, 0)'B'SrdQ)- + in -V(r-, 0)'B'8rdr (10)

However, Mt is a martingale, so the sum of the dr integrals in (10) must be 0, and

yr =,*(r-, 0)'(8r + BI (u*)8r + B U)r)

9



THEOREM 4.4. Suppose the optimal control u* is Markov. Then a.s. in w and a.e. in t,

u * satisfies the minimum principle
<p OA  r) <r B

(Pr-, .N(ru*)(vr - ur)qr-) + (6,-, 5kr,u*)(Vr - U*)qr.)* 0. (11)

Proof. Substituting -y from (9) into (7), and noting B(I + B) - 1 - (I + B)-B 0 ,

the result follows. (Substituting for B and 8 gives an alternative form.)

We now derive a forward equation satisfied by the adjoint process p:

THEOREM 4.5. With 6 given by (8)

pt = EI[p*(T, Ol'eI- A(u*)p,_dr

t ft
S(I + B1(U*))brdr + SrdNr. (12)

Proof. Pt T* (t, O)'Mt and this is
!t

l= E[I[*(T, O)Q] - A*lMdr

!- +Bj * Bd-lBI+ (1+fSd)

t t

+ ( B'q ' 2 pr...r + ( I +-' BP')er Bp~~

0 0

j (1 + B )- lB I +* )rr

El [,*(T) ] - A!pr-dr t , __

+ ft(I + B')-'B'2prdNr + t((I + B')Sr + B'Pr-)C,-
10

-fo(1 + B')-'B'((l + B')Sr + B'Pr)aNr

E, (T ol'efl- JX prd

+ t BrdNr.

10



Therefore, the result follows. 0

However, an alternative backward equation for the adjoint process p is obtained from

the observation that ,the sum of the bounded variation terms in (10) must be identically

zero. Therefore, we have the following result which appears to be new:

THEOREM 4.6. With J given by (8) the Markov adjoint process pt(q) is given by the

backward equation

apt + -t - (A*(q)' - B* (q.)')q + A*(q)'pt +- (I + B*(q))8t = 0

with the ternival condition

pT=e.
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AIISTPACT. - Time reversal is considered for a standard Poisson process.
at point process wvith Markov intensity and a point process with a predic-
table intensity. In the latter case an analog of the Fr~chet derivative for
functionals of a Poisson process is introduced and used in techniques of
integration-by-parts to obtain formulate similar to those of F6I1mer inl thle
Wiener space situation.
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358 R. J. ELLIOlT AND A. II. TSOI

1. INTRODUCTION

The time reversal of stochastic processes has been investigated for some
years. One motivation comes from quantum theory, and this is discussed
in the book of Nelson [l1]. The time reversal of Markov diffusions is
treated in, for example, the papers of Elliott and Anderson [41, and
Haussman and Pardoux [8]. However, the first discussion of time reversal
for a non-Markov process on Wiener space appears in the paper by
F611mer [7]. in which he uses an integration-by-parts formula related to

the Malliavin calculus.

In the present paper an analog of the Frchet derivative is introduced
for functionals of a Poisson process. The integration-by-parts formula on
Poisson space, see [6], is formulated in terms of this derivativc and
counterparts of F611mer's formulae are obtained.

In Section 2 the time reversed form of the standard Poisson process is
derived. Section 3 considers a point (counting) process N with Markov

intensity h (N,), so that Q, = N, - Ih(N3)ds is a martingale, and obtains

the reverse time decomposition of Q for tc(0. 1]. Finally, in Section 4,
the situation when h is predictable is considered using the "Fr&het
derivative and integration-by-parts techniques mentioned above.

2. TIME REVERSAL UNDER THE ORIGINAL MEASURE

Consider a standard Poisson process N = { N,: :< t I } on (i),. ,P).

We take No=0. Let {.6,} be the right-continuous, complete filtration
generated by N. Let G =a { N,: t 1s <I} and { G, } be the left-continuous
completion of { G? }.

The following result is well known; see, for example, Theorem 2.6 in

[ 1. For completeness we sketch the proof.

innaes de Ilnuinti lenri Poincar - Irobabit.-s ct Statistiqucs
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TEIE REVERSAL 359

THEOEM 2. 1. -Under P, N is a reverse time G,-quasiinarlingakc. and
it has t/he decomposition:

N=N2 4+- N.,f(S.

whlere M is a reverse time G,-martingale.

Proof. - Sine N is Markov. wc have, for s> 0

E [, N I j E[N, N, N
C (2.1)

_N

(see [5] and [10]). Thus

To EJI E[N.. N, IG5j Ids = 0 (c).

By Stricker's theorem [12]. N, is a reverse time G,-quasimartingale. Con-
sidering approximate Laplacians we see it has the decomposition

Nt ,-M+fods (2.2

where from (2. 1) and (2.2), for almost allt

0C.= im E aG(I

3. TIME REVERSAL AFTER A CHANGE OF MEASURE:
THE MARKOV CASE

Consider a process h,=h(N,) which satisfies: There cxist positive cons-
tants A, K >0 such that 0 <A <h (N,):5K for all t. a. s.

Define the family ({AV,~~ }~ r: of exponentials:

A,= [1I +l±(h (N.--l) AN.) exp (Ih (N. -)d)

Vol. 26. n* 2.1990.



360 R. J. ELLIOlT AND A. IL. TSOI

Then A is an (9,)-martingale under P, and is the unique solution of the
equation

At= I +f A,,.- (h (N4 I) (dN - du).

Define a new probability measure Ph by

A,.

Then under ph, the process H, =N, - Ii(N,,-) di is an (YF,)-rnartingale

(see [3]). Let P()= fIz(N.)du~z so that r, is positive and increasing int

because h is positive, Write

N;= N, (W

LcmI 1\ 3. 1. - (N;) is a Poisson process under ~.F) ~Ph).
Proof. - Since H, N, - O(0) is an (,)-martingale under P'.

H,=H,,(,) =N,,)- is an (.F;)-martingale tinder Ph. By U~'s rtule,

H' 2 -=2 [H'- d[H+ (AN )

Hence HI t is also an (.F9-nartingale tunder ph*, Trherefore. {N; }is
P'oisson by Levy's characterization (Theorem 12.31 in [21). 0l

LEMN1A 3 .2. - N is MArknov under P.*

Poof - Consider any pD e C' (R). For t;:s, by Bayes' form ula,

E h [(pF [A, T (N,) I YF]
E[JA, Fj

=E [A' p (N,) Ni].

because N is Markov under P, where

A=, H (I +(I(N,)- l)AN.)exp(I (I - h (N,,)) eh

&males de IIniut Ikigri Poitncari Prohabiit~s ci Slatistiqiucs



TIME REVE3RSAL 361

Hence

Eh[(p (N,) I8Fj = Eh[(p (N,) INs
and N is Markov tinder P'. 0

Note that

H, =H 1 +N,-N, + Jih(N~)d(s. (3.1)

Thus H, is a reverse time G,-quasimartingale under Ph if and only if N,
is. To determine the reverse time decomposition we again investigate thle
approximate Laplacians. as in [41.

TiirEORENt 3.3.

jim ~E h[N,-..-N,IG,I= -Ehh(,-I) N,iN, (3.2)

Proof. - By Lemmia 3 .2,

E h [N, - N,.. I 0, = E" [N, - N,~ N].
Consider a bounded, differentiable function T~ onl R and its restriction to
Z (thle range of N). Now

(p(N)= p (N,-+ (p(N-+ )-p(,-)eN.

So

p (N)(N, - , (NN,.-,) ((p (N,. + I)-p (N, -))(N,

+f'(p(N.,-dN,+ Ap(N)AN,

+ f~(N + 1)d-N,.

Since

H, Nt N- Ii, (Ne) ds

Vol. 26. n' 2-1990.



362 R. J. ELLIOT7 AND A H TSOI

is a martingale under Ph,

=Eh f(N,- N,,) ((N + 1) - (N-)/zIt(N,-) cs]

+ E h[Rp(N...±I)(NS-ds]- (3.3)

Now. if I (pI1: G,

I2K E'[hN(NN- -N,-,

U -C (p N.+Eh 1) -i (N )du ) -

2KC{ Eh N., N,-Vl h(N,,d -]1 K(lit

+2G E [fIt (N,,4 dii] +8 }
<2K JK(C h)h(2 + c) + K c3 +cKis

urn ~ j[ -E (, N ,- .JE- N,...f +

Eh~~~ [C (N, +It (N,), -h dup +Ni K c + )IS(

li -'[p( ,)N, N,,)= E [p(N , -+ 1)(N(,)I

cInae 1i 0',sdu Ffir ogcr rbb~i~ iSiitq

-4-pN, IhN)] 34

However
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And

Eh [p (N (,+ 1) It(N ,))

(p (k+I1)Ihl(k)~

Z(p (1) h (i-I1)

E h (N) h (N, - 1

Hence,

E h[(p (N, + 1It (N,)] E"hIp (N,)/h(Ns,-1) -- N, ] (3.5)

fL hf/(N ,,) dui

Thus from (3 .4) and (3. 5),

lrn E h Fp (N,)(LN - 9E hF(p (N)Ih(N, 1) N
r.10 j, t(N) (lit

or

iim E h[N t G']= -Eh{/H2N 1l) N, Nj 0
C , 0 F fJ'It (Nitdu

By Theorem 3 .3 and an argument similar to that in [41, we see that N.
and hence H, is a reverse time G,-quasimartingale uinder P', and it has
the decomposition

H,= H, + c,+f ,d,. (3.6)

Moreover, we have the following expression for a,:

TiirEoNi 3 .4. - The integrand a~, that appewars in (3 .6) is givenl by

c=h (N)- E h(N, - 1)~N N,1

Vol. 26, n* 2-1990.
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Proof. - From (3. 1) and (3.6),

Eh[H, - - H, jG,]=Eh a, ds IGi

=E' [NN. Gj + Eh [ hi (N,) (IsI G,.

Thus for almost allt

Oct= im IJh a ISIG im E h[N,- N, Gj +Ih(N,).

From Theorem 3. 3, oc, has the stated form. 0

4. TIME REVERSAL AFTER A CHANGE OF MEASURE:
THE NON-MARKOV CASE

This section involves an integration by parts for Poisson processes which
is effected by using a Girsanov transformation to change the intensity and
then compensating by a time change. In contrast. the integration by parts
considered in [ I] is obtained by introducing a perturbation of the size of
the jumps. The topic is further investigated in [6].

Suppose {N,:O::t I } is a Poisson process with jump times
T, Al1, . . . ,T,, A 1, . .. Let { uj be at real predictable process satisfying

it )1 is positive and bounded a. s.
For E>0, consider the family of exponentials:

A'= 11 (l+&tiAN,)exp ( J1, Is)

Then ({A' is an {.F} -martingale with E [A']= I (see [61). Define a proba-
bility measure P' on FI by

"P&

Set

Anl~ses d1e IOfstituf heniri I'vinzcari - Probabjlit6s ct Statistitfucs



TIME REVERSAL 365

and write

(t) ds
< ( = 1 (0= y,' ( 0. , s

Then the process N8= N, ( ) is Poisson on ( F, ', (.P) with jump times
(p.(Tl) A 1, ... . A(T,) A 1,... (see [6]).

For { u, } as above, set U, = o u ds. Suppose g. (w) is an { F, }-predictable

function on [0, 1]. Then for 0__s<T, A 1,

and in general, for T,,_ A 1 <s<T, A 1,

g,(w)=g(s,T, A 1,. Tn_ A 1).

Note that by setting g(O,O, ... )=g(s) for 0<s<T, A 1.

g.((s-T) v 0 ..... (s--T,,_) v 0),0,0,...) for T,,-. A I <s<T,, A I,
etc., such a g can be written in the form

g,(w)=g'((s-T, v 0.(s-T 2) v 0. .. .), se[0 I]. (4.1)

Therefore, we shall consider a predictable function g of this form, and
further assume that if

g=g'(tt,t2 .. ,

then all the partial derivatives og  exist for all s, and there is a constant
a3ti

K>O such that

Lg <K forall i, and for all s. (4.2)

We now define the analog of the Fr~chet derivative for functionals of the
Poisson process.

Write

gr=g.((s- p.(T )) v 0. (s -(,(T,)) v 0,

Then

_-_ =-=, gs((s-T ) v 0,. . .,(s-T,,) v 0,...)
fT,"

x u,edrlTj<,. (4.3)

VoL 26, n* 2-1990.
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Define

p(dt)=- ags T .,81 P= ti

where 5r is the point mass at Ti Then

&jc o i,. dr p (dt)0 fo E
f= f o0 r:; , , it, d t'r p ( d t )

= S ([r, sI) it, dr

= - lr :-T <sI& lr dr
fto i-= I 01Oi

=fD g, (. ,s]) iu dr,

where

Dg (.,[r,s])=- X - , i--

Write

Dg,(. U)--- Dg,(.,[r,s])u, dr.

Note that

i TJ (4.4)
DgTi(.,IU)= Z1 it, 1r.(4

j= I aii Jo

DErINITION 4. 1. - A process {g of the form (4. 1) is said to be
differentiable if it satisfies (4.2) and (4.3) for all it satisfying (i) and (ii)
above, and for all s. We call Dg,(., U) the derivative of g, in the direction
U. It is of interest to note that this concept of differentiability of a function
of a Poisson process is an analog of the Fr&het derivative of a function
of a continuous process. See F611mer [7), where similar Formulae arise
using the FrMchet derivative.

Annalesd e i'linsutt lenrt Poincari - Probabiht6s et Statistiques

X -



TIME REVERSAL 367

Now suppose { h,} is a bounded, { F, }-predictable process of the form
given by (4. 1), which satisfies:

(a) h is differentiable in the sense of Definition 4. 1.

(b) L. exists, and there exists a constant A > 0 such that <A for
as as

all s, a. s.
(c) There are constants B > 0, C > 0 such that 0 < B <h, < C for all s,

a. s.
It is easy to check that h =h,((s-T,) v 0, (s-T 2) v 0 .... ) is predict-

able. Consider the family of exponentials:

G,= f (I +(h, -1) AN )exp (I - h)dsl

-(j- ,) eXP(Jf(1 - h.) d4 (4.5)0 s~0

Then { G, } is a martingale with E [G, = I. Since for each fixed m, if
T,- (co) <t< T, (w). G, is a function of (t, T, (e)..... T"- (c0)), we see as
above that G, can be considered to be of the form

G,=G,((t-T,) v 0, .. ... (t-T,,) v 0, ... .

THEOREM 4.2. - (G,) defined in (4.5) is differentiable in the sense of

Definition 4. 1.
Moreover,

DGI (., U) Gi -  it, G I Ics

=f I II +  ( ah + D h(.,[r.s])] (Id N u, dr

- IDh 5 (., [r,sJ) dsurdr, a.s. (4.6)

where
a

Ys -  s:5Tj G, ((I -T,) v 0,...,(1-T) v 0...).
j=1 3 -a

Proof - The first identity follows from the definition and properties
of the derivative. To determine DG, (., U) we calculate the derivative of
G at 0. Writ e

: €hc h, ((s - (p, (T) v 0,., (s - (, (T,)) v 0 .... )

Vol. 26, n* 2-1990.
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so

Q,= H- (1 +(h-l)AN,(,))ex p  (I-h)ds)

11 h' TiX)) e ( -h)

=( h,(T,) exp (I -h.)ds).
O :T,; *c(tl)

Then

logGy= C lT.;(Qlogh(,),+ (,-) ds. (4.7)
i= t 0 O

Differentiate (4.7) with respect to e, and then set =0, to see

I = 11 L ahTJODG, (., U) = ITi:,/ / u, dr

,"OTi /T, (TJ "-

+~ tu, dr- iutdrdI, aj To fo ,IT, I

f- Dh,(.,U) (is a. s.

From (4.4) this is

= ITit u, f /i, dr

al~ T 'JU)+ -Iu, dr+ Dh/T,(
j =- I atj fO . hITt I

-f D h. (, U)d(s = fo hL jur dr

a ff o
+ 'Tjlsj Jlrdr+Dh,(.,U)J-(IN,

-f Dhs( .U) ds. (4.8)

(Formally, the differentiation of the indicator functions , introduces
Dirac measures 6(t-Ti.) However, P(T 1=t)=O and we later will take

Annales de 'institut Henri l'oincar - Probabilit6s ct Statisniqucs
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TIME REVERSAL 369

expectations, so these can be ignored.) From (4.8),

DGI ur} ' 'J, ( T+ ,IT.<S V) u draOs jo j= 1 0t d

Coo a i 2
+ Dh(.,[r,s])u,dr--IN,-  Dh, (., [r,s)udrds

00, 1'j <S al

probailit meaur as on, a by:

+ D h-(. r , s ]) u r  d r d N ,- f I o ( 4 . 9 )

where Q --- f is + n ( aT~ingaI  u+Dh, We[rws]) aNshu, dr
aivs =m a ahtia h

f- D t ., [r, s]) ds it, tit,

which is (4.6). 0(
Consider the family of exponentials defined by (4.5) and define a new

probability measure Ph on Fj' by:

dp
h

1- = GI.

Then (see [3]) the process

Z,= 1 -,- f d s 0 (4.9)

= Q 1f- 1 ) ds

where Q,= N, -t, is an (.F,)-martingale under P. We want to show that
Z, is a reverse time G,-quasimartingale under P', having the decomposition

Z',= Z + M, + d.(4.10)

From (4.9), we can write

Z,=Z +Q-Q-I- (h,- I)ds.

Now for almost all t

limn Eh rr(h, -1)d(s G, =E h[h, -I GI.

~Vol 26, n 2-1990.
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370 R. J. ELLIOTT AND A. 11. TSOI

Hence, to show that Z, has the decomposition given by (4. 10), it again
suffices to consider approximate Laplacien as in [4] and show that

lim 1Eh[Q,- -Q,IG,]
1 0

exists.

TiEOREM 4.3. -- For ahnost all te[0, 1]

lir E h[Q- Q,_jG= -I E"[Q,+a, IG,]- Eh [b, IGI (4. I1)

where

a, f j l"h+ Tj<r l
at J, at; a-- o

+ D [ dNrds - i [s, r]) drds

and

b,=f[L r +  l1xj<r,L +hD.ht

Proof. - First we note that if H ((I -T 1) v 0, . . .,(I -T,) v 0, . . .) is
a square integrable functional and its first partial derivatives are all
bounded by a con-,tant, then, using a similar argument as in [6], we have
the integration by parts formula

E[(f usdQs)H]= -- E[DH(.,U)] (4.12)

where DH (., U) is the derivative in direction U of Definition 4. 1.
A direct consequence is the product rule

E[FH( iudQI1= -E[FDH(..U)]-E[HDF(.,U)]. (4.13)

Let H = G be the Girsanov density, then (4. 13) becomes

Eh [FJ udQs j=-Eh[DF(.,U)]-Eh[FG-'lDG1 (.,U)]. (4.14)

Now fix toE(0, i). Write Tk(1o) for the k-th jump time of N, greater than
to.Suppose F is a bounded and Gto measurable function. Furthermore,
we suppose that F is a differentiable function (in the sense of Definition
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4. 1) of the form

F((1 -T, (t)) v 0,. .(1-TkQto)) v 0,..)

and that the derivatives of F are bounded. Then the measure DF ( ., (it) is
concentrated on [to, 1) and (4. 14) holds for such an F. Take

i~, -, o) (s) in (4. 14). For such an F

- Io DF(.,[i0 ,1])dr

= DF (o, 11a I).

Therefore, we have from (4. 14)

Eh [(Q" - Q1 0 ) F1= c Eh [DF(.[to, 1)

+ EhFFGTI 1~ (4.15T,5)Ia

From (4. 15), for almost allI

Ir -m[(Q,,-Q,0.),F1= -1H [DF(.,[,0 , l])J

+~EllFG-1 1to;9T<1 !] (4.16)

Using (4. 15) again with & =to= t, we have

Now let u,=Ito. 11 sW in Theorem 4. 2 to obtain

G~.1[ 1 jIds~ ! D~r.sr)i~d

vo i=6 n 199

_ _ _rS 1) IN I
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Hence (4.17) becomes

-E"[DF(.,[ _ 1]] -Eh[Q, FI+ E[,F. (18

t t

Now take u~ ~(s) in Theorem 4.2 to obtain

=jy f''[kr+ (Tj all'* + Dh., [s, rl) I)±N, (s

{f fDh. sr])dr (s. (4. 19)

Multiply both sides of (4. 19) by F, and then take expectations

~Eh[F f ( s: T,<IOIG- I (sl=E[Ff' b,(Iv] 4.0

D~ivide both sides of (4. 20) by c, and then let 0, *o obtain for almost
all t

-Eh[F~i'IT-r.'GI) G- Eh [b, F]. (4.21)

Combining (4.16), (4.18) and (4.21), we have

lrn Eh [(Q, - Q-.) F] Ehi [(a, + Q,) F] - Eh [b, F].

Thus we have proved (4. 11). 0
As a consequence of Theorem 4. 3, Z, is a reverse time G,-quasimartin-

gale having the decomposition given by (4. 10). It follows immediately
that the iitegrand a, in (4. 10) is given by

c,,=Ehfb,+z,- I Gj- Eh [a, + QGj.
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Abstract

Stochastic integrals with respect to a martingale X often involve
a predictable process integrated against the continuous martingale
component Xc together with terms which axe integrals of the com-
pensated random measures associated with the jumps. The latter
are related to 'optional' stochastic integrals. The main result of this
paper relates such a stochastic integral with the sum of a predictable
stochastic integral of X and an orthogonal martingale. The result
has applications in the hedging of contingent claims in finance.
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1 Introduction

For a real local martingale

=X 0 + M + Md

write It = lix for the random measure associated with the jumps
of X (see jacod [7]), and v, =P for its predictable compensator.
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2 Robert J. Elliott and Hans F611mer

Consider a local martingale of the form

Nt = No + j4dM,' + jf j43 (y)(L(dy, ds) - v(dy, da)) (1)

where 0 and ip are suitable integrands. Projecting N on X we can
write

Nt = No+ .08 dx 8 + rt (2)

where r is a local martingale orthogonal to X, in the sense that the
product PX is a local martingale. In this paper our purpose is to
determine explicit formulae for 7 in terms of 0 and 4', both in the
general case and for Markov diffusions with jumps.

These results have applications in the hedging of contingent claims
in finance. See [5] and [6). For example, suppose that the martingale
Xt represents the price of some asset at time t and that for T > 0
a contingent claim is given by H(XT), where H is a function such
that H(XT) is a real, square integrable random variable. Suppose at
time t we invest amount t in the asset and an amount tl in a riskless
bond with zero interest rate and price Y = 1. Then the value of our
portfolio at time t is

Vt = 6t + rhY = 6tXt + tqt.

We assume is predictable with respect to the filtration {Ft} gener-
ated by X, and 77 is adapted. The accumulated gain from the asset
price fluctuations up to time t is the stochastic integral fo3 dX.
Then the cost accumulated to time t by using the investment strat-
egy (&, th) is

Ct = Vt - J dX, 0 < t < T.

We want our investment strategy to duplicate the contingent claim,
so for a strategy (, r/) to be admissible we also require

VT= &XT + r = H(XT).

EL
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Now suppose H(XT) can be represented as a (predictable) stochas-
tic integral

H(XT) = E[H(XT)] + o d, a.s. (3)

for some (predictable) integrand H. Then let us take an investment
strategy ( , i/) and value process V defined by:

and t H

Vt= E[H(XT)] + J0 3 dX,.

We have VT = H(XT), so the strategy is admissible and for all
t E [0,T]

Ct = CT = Co = E[H(XT)].

That is the strategy is self-financing because, apart from the ini-
tial cost Co = E[IH(XT)], no additional costs arise and no risks are
involved.

Conversely, if there is a self-financing strategy ( , 77),

Vt = Ct + 0adX, = Co + 03 ,dX,

so V is a martingale. Therefore,

Vt = E[VT I F] = E[H(XT) I Ft]

and
V0 = Co = E[H(XT)],

so the martingale V has the representation

V = E[H(XT)] + j sdX,. (4)

The existence of a self-financing strategy is, therefore, equivalent to
the representation of the martingale E[H(XT) I Ft] in the form (4)
for some predictable integrand . In general, a representation in this
form is not available. In this case we can proceed as follows (cf. [5]
and [6]).
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Definition 1.1 An admissible investment strategy (6, 7) is said to
be mean self-financing if the corresponding cost process C is a mar-
tingale. That is, for t < T,

E[CT - Ct I Ft] = 0 a.s.

In this case, by definition

Vt = Ct + j0 ,dX, = E[CT I Ft] + jO 68 dX.,.

Therefore, V is a martingale for an admissible mean self-financing
strategy. Consequently,

Vo = Co = E[H(XT)]

and

= = E[H(XT) I Ft] = E[H(XT)I + Kt - j. ,dX,

where Kt is the martingale E[CT I Ft]- Co. Note that, if (6, 1?) is
an admissible, mean self-financing strategy, Vt = E[H(XT) I Ft] is
independent of . However,

Ct = c = Vt - fadX,

does depend on 6, as does K above. Therefore, K = E[CT I Ft] -Co
and each admissible, mean self-financing strategy ( , 77) gives rise to
a decomposition:

= E[J(XT) I ftj = E[H(XT)I + Kf + 0 sdX.. (5)

Definition 1.2 For each admissible mean self-financing strategy the
remaining risk is defined to be

RC E[(CCT- Ct) 2 I F].
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Consider the unique Kunita-Watanabe decomposition
tt

Vt = E[H(XT)] + rt + fo dX,

where r is a martingale orthogonal to X and * is a predictable
integrand. Now define an investment strategy ( by putting

V, = E[H(XT)] + r, + *,dX, and it = V - tXt. (6)

Then (4*, 7*) is an admissible, mean self-financing strategy which
minimizes the remaining risk Rt. To see this note that for any other
admissible, mean self-financing strategy ( , 7):

, cT -ct - , -
However, from (5) and (6)

K, - f + T ,dX = rT - rt + I *x,.

Therefore, because r is orthogonal to X,
tT

[(CT -t,,)2 I Fj = E,(rT-r,) 2 I Ft+E [jo ( -. .)2d(X,X), I F ,

and this is minimized when = *. Consequently, the unique admis-
sible, risk minimizing investment strategy is ( *, /*), where * is the
predictable integrand arising in the representation (6).

This discussion indicates why decompositions such as (6), to-
gether with an explicit formula for the integrand, are of interest
in finance. Representations such as (1) arise when the asset price
Xj = Xo+ +Mt4+ M d also involves random disturbances of jump type.
In that case, a contingent claim typically admits a representation as
in (1)
H(XT) EffX(XT)_L- [T ac+ f [ Y" 'dy ds)-v(dy, d .

j r~I J0 JRY.9k""'
(7)
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Then q, and 0,(y) for each y E R, (or, at least, for each y in the
support of ya = ix), must represent amounts invested in different
assets in order to duplicate (i.e., represent) the claim H(XT). How-
ever, if the only assets available are X and Y = 1, we must consider
the alternative representation (2)

H(XT) = E[H(XT)I + jT + rt.

Then - will generate the risk minimizing mean self-financing invest-
ment strategy described above.

In particular, even though (after a Girsanov change of measure)
the Markov diffusion process considered by Aase in [1] is complete in
a mathematical sense, that is, contingent claims have a representa-
tion of the form (7), it is not complete in the financial sense; that is,
they do not necessarily admit a decomposition (3). To replicate the
claims in Aase's model an uncountable number of additional artificial
assets would be required. Clearly this is not realistic.

Orthogonal martingale representation after a Girsanov change of
measure will be discussed in another paper.

2 Orthogonal Projection

Consider a real local martingale

Suppose

= X(dy, dt) = ZI{Ax,0o},( 3,Ax,)(dy,dt)

a>O

and
v = v(dy, dt) = y

Write {Ft} for the right continuous, complete filtration generated
by X. Consider a process N which is a stochastic integral of the
form

N " No + J o!,dMc + j s(y)(IL(dy, ds) - v(dy, ds)) (8)

J0, 0
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for suitable integrands 0 and i. What we wish to do is write

Nt = No + j-.dxs+rt (9)

where y is a predictable integrand and r is a local martingale or-
thogonal to X. From Jacod [7] we know that the stochastic integral
ff (do - dv) in (8) is related to an optional stochastic integral with
respect to Md = ftfRy(i(dy, ds) - v(dy, ds)); consequently we are
relating the optional integrals in (8) to the predictable integral in (9).

Proposition 2.1 Assume there is a reference measure v = v(w, ds)
such that (Mc. MC) and A are absolutely continuous with respect to v,
where

v(dy, ds) = m(s, dy)A(ds).

Write p, = d(Mc, Mc)/dv and A, = dA/dv. Then if Nt is the mar-
tingale given by (8), the process 7 in (9) is

Ps% k + g A fR yi0(y)m(s, dy) (10)

p + A, fR y2m(s, dy)

Proof. Note if 7 is the predictable integrand of (9)

t t e t d

At= y X,=1 yjd~c+J 1 d (11)

-1A~/sM, + jt jy(j(dy, ds) - v(dy, ds)).

From (8) and (9)

Pt = (€, - i)dMf + J(1 (y) - -ty)(/u(dy, ds) - v(dy, ds)).

The martingales r and X are orthogonal if [r, X] is a martingale
(see Dellacherie and Meyer VIII.41, [3]). However, writing X as

Xt =X0+ Mf+ ft f (dy, ds) -v(dy. ds))
O JR
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we have

[r, X]t = ( - 7s)d(Mc,MC), + j y(O(y)- 7 8y)ji(dy, ds)

= (0 - -3')psds + Y(O.(y) - 7 sy) (s(dy, ds) - v(dy, ds))

+j o'R( ¢° (y) - 7.y)m(8, dy)Ads.

This is a martingale if and only if

0o(03 - 1)p.,ds + fofJy(¢O(Y) - 7y)m(s, dy)Ads

is the null process, which is the case if and only if the integrand is
zero. Therefore,

(0, - 7s)PS + ASJ y(iP8(y) - y.y)m(s, dy) = 0

and (10) follows.
Remarks 2.2. 1) If Md = 0, so that 14 = v = 0, then -=q5.
2) Note

R y¢,(y)m(s, dy) = E[AXAN, I F,-]
= P(AA N).

and

!R Y2m(s, dy) = =I ] (AX),

where P( ) denotes the predictable projection.
3) If M' = 0,

'= fRyOS(y)m(s, dy) E[AXAN, I F,] _ P(AXAN),

fRy'm(s, dy) E[AX IF,_] p(AX2),

so -i can be interpreted as the regression of the jumps of N on the
jumps of X.

A) w;th toAl - c t as tensor product. .

in Rl1, the same expression for 7 is valid when X is an m-dimensional
martingale.
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3 Representation Results

Consider a real, local martingale

Xt = X0 + Mt' + Mtd

and let j = yx, V = AP. Suppose F E C1'2, the space of functions
continuously differentiable in t and twice continuously differentiable
in z. Then the differentiation rule gives (see Jacod [7])

tOFs X,_)ds + (tOF ,
F(t,X) = F(O, Xo) + -( as, )d+ x

+jJ/(F(s, Xo_ + y) - F(s, X._))(p(dy, ds) - v(dy, ds))

j jtO 2Fs
+ I - (s ' Xs - )d(MCMC)s (12)

Jt ( + y) - F(sX.-) - OF($X))v(dyds)

Suppose X is Markov. For a time T > 0 and an integrable C2 func-

tion H(.), consider the random variable H(XT) and the martingale

Nt = E[H(Xt) I F].

Because X is Markov

Nt = E[H(XT) I Xt) = V(t,Xt), say.

The following representation result appears to be part of the folklore.

Proposition 3.1 Suppose V is C1 ,2, that is continuously differ-
entiable in t and twice continuously differentiable in x. Then the
martingale N is given by the stochastic integral representation

Nt = E[H(XT)] + to )dM

ft f(V(,X 5 - -) V(,o_\

Jo JR + I

x (p(dy, ds) - v(dy, ds)). (13)
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Furthermore, suppose

(Mc, MC)t = f pds

and
v(dy, ds) = m(s, dy)Atds.

Then V is the solution of the backward Kolmogorov equation

OV 102V
- S- + 

2 O
2 
2

M'(VS'x.- + Y) - V(S, XI.) - 8V (S,X, )Y)m(s, dy)AOx d
=0 (14)

with terminal condition

V(T,XT) = H(XT).

Proof. The result follows by expanding V(t, Xt) by the Ito rule
(12) and observing that, because V(t, Xt) = Nt is a martingale, the
sum of the bounded variation terms must be the null process.

Remarks 3.2. Often. (see Example 3.4), the differentiability of V
follows from flow properties. In the pure jump case only increments
of V enter in (13).

Corollary 3.3 Write AV(y) = V(s,X._ + y) - V(s,X.-).

Then from Proposition 2.1 Nt can be written

Nt = EIH(XT)] + j -adXa + rt

where
Pa =  + AfRyAV(y)m(s, dy) (15)

pa + AsfRy
2m(s, dy)

and F is a martingale orthogonal to X.
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Example 3.4. Suppose X is a Markov diffusion:

Xt = X0  + jg(s,X_)dB,

+ J h(s,x_,y)((dy,)-(dyds)). (16)

Here / is a random measure and P = P; note A is not /ix. Suppose
,(dy, ds) = m(s, X-, dy)A.(X,_)ds. Write &r,t(x) for the solution of

(16) starting at time r in position x, so that

)= + g(,&._(x))dB. (17)

+ I, Jt 4hs .. () y)(ft(dy, ds) - iP(dy, ds)).

Suppose g, h, m and A and their first two derivatives in x are mea-
surable with linear growth in the x variable. Then from the theory
of stochastic flows, see [2], it is known there is a set A C R of mea-
sure zero such that the map (r, t, x) -4 r,t(x) is twice differentiable

in x with derivative = D,t. Again write {Ft} for the right

continuous o-field generated by X and suppose H is a C 2, integrable
function. For T > 0 consider the right continuous martingale

N, = E[H6O,T(xO)) I Ftj
= E[H(&,T(Xt))lX,] = V(t,X,).

From the differentiability of the flow

TX(t Xt[) = E (XT)D,T I Ft].

Substituting in (13) and (15) we have the representations

Nt E[H(XT)I + JE [OH (Xr)Do,T F. ]~ Do,'g(s, X....)dB.
t Itrrrric IV .NN U(c _fv NNI V 1

-- Jo JRk - '  ' Tk ° - +  -

x h(s, o,a_(Xo), y)(4(dy, ds) - P(dy, ds))
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and from Corollary 3.3 this is t
- E[H(XT)] + j -ydX + rt

where

78e = {g(S,X._.)2E[IH(XT)Do,T IF,]-

+A,(Xo_)IR yE[H(o.T(X,_ + y)) - H( °_,T(XI_)) I X._]
xh(s, o,.-(xo), y)m(s, o,,-(xo), dy) }

X [g(, , x._)2 + A,,(X,_)

XIyRh(, o,,-(xo), y) 2 m(S,' o,_(xo), dy)] -'

Example 3.5. The random measure in (16) could be a Poisson
random measure. However, for simplicity suppose it is a finite sum
of independent Poisson processes Nj, i = 1,...,n with time varying
jump sizes at and intensities Ai. Suppose g(s,X.) = oX._ and

h(s, X-, y) = X.-, so that Xt, (representing an asset price under
a 'isk neutral' measure), is given by the following "log Poisson plus
log normal" equation

t n

x, = Xo + a X,_dB, + E X -a'(dN. - A'ds). (18)
i=I 1O

Suppose for an integrable C2 function H, H(XT) represents a
contingent claim depending on the asset price at time T > 0. Then

N, = E[H(XT) I Ft]

= E[H(XT)] + jo -IdX, + r,

where
n

0 2X.2E[ (XT)DOT I F.-]D-1 + Ai Aa V
i=l1

g2x2 + Ai (ai)2
Il
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and

A',V = E[H( 8... ,T(X 8.. + a')) - H(6a..,T(Xs-)) IXs]

From (18)

xt = =-x'-)

x.- exp (a(Bt - B.) - -) a'A'ds

X fl (1 +,,AN). (19)
s<r<t

so

Ds-,T = Do,T" D1,3_.

exp (a(Bt - B.)- t t-s 'A sa2exp~a(t Bs) -- ( s) -=1 Z i ids

x (1+ aAN).
.<,-<t

Suppose I(XT) is a call option of the form H(XT) = (XT - K)+.
Then H is not C2 but is the limit of the smooth functions H,(XT) =
1(XT - K + /'(XT- K ) + -); using approximation arguments it is
shown, for example in [4], that the above theory applies to H. Now
UF(XT) = IXT>K, so

E[' (XT)Do,T I F]D-F = E[IXT>KDs-,T I X.]

and because the B and N' are independent this can be evaluated as
in [1], giving a Black-Scholes type formula. Similarly, with G-,T(Xs-)
given by (19) AIV can be calculated.
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